Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho pt: x^2 - 4x + m = 0(m là tham số) b) Tìm m để pt có nghiệm x1, x2 thỏa mãn: 1/x1^2 + 1/x2^3 = 2
Lời giải:
$\Delta'=4+m^2+1=5+m^2>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm phân biệt với mọi $m\in\mathbb{R}$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=-4\\ x_1x_2=-(m^2+1)\end{matrix}\right.\)
Khi đó:
\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-5}{2}\Leftrightarrow \frac{x_1^2+x_2^2}{x_1x_2}=-\frac{5}{2}\)
\(\Leftrightarrow \frac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=\frac{-5}{2}\Leftrightarrow \frac{(x_1+x_2)^2}{x_1x_2}=-\frac{1}{2}\)
\(\Leftrightarrow \frac{16}{-(m^2+1)}=\frac{-1}{2}\Leftrightarrow m^2+1=32\)
\(\Rightarrow m=\pm \sqrt{31}\)
PT có 2 nghiệm `<=> \Delta' >0 <=> 2^2-1.(m+1)>0<=> m<3`
Viet: `x_1+x_2=-4`
`x_1 x_2=m+1`
`(x_1)/(x_2)+(x_2)/(x_1)=10/3`
`<=> (x_1^2+x_2^2)/(x_1x_2)=10/3`
`<=> ((x_1+x_2)^2-2x_1x_2)/(x_1x_2)=10/3`
`<=> (4^2-2(m+1))/(m+1)=10/3`
`<=> m=2` (TM)
Vậy `m=2`.
x^2-3x-(m-1)=0(1)
a)Dể phương trình có 2 nghiệm dương phân biệt:delta>0,S>0,P>0
9+4m-4>0>>>m>-5/4;S=3>0;P=m-1>0>>m>1.
>>>>Để(1) có 2 nghiệm phân biệt thì m>1.
b)x1^3+x2^3=18>>>(x1+x2)(x1^2-x1x2+x2^2)=18>>>x1^2-x1x2+x2^2=6
>>>(x1+x2)^2-3x1x2=6>>>3x1x2=3>>>x1x2=1
-(m-1)=1>>>m=0.
Vậy m=0
\(pt:x^2-4x+m=0\)
\(\Delta=\left(-4\right)^2-4.1.m=16-4m\)
Để pt có 2 nghiệm phân biệt thì \(16-4m>0\Leftrightarrow-4m>-16\Leftrightarrow m< 4\)
Theo hệ thức Vi-et:
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m\end{matrix}\right.\)
Ta có: \(x^3_1+x_2^3-5\left(x^2_1+x^2_2\right)=26\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-5\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=26\Leftrightarrow4^3-3.m.4-5\left[4-2m\right]=26\Leftrightarrow64-12m-20+10m=26\Leftrightarrow-2m=-18\Leftrightarrow m=9\left(KTM\right)\)
Vậy không có giá trị m thõa mãn
Đâu có TM cái m ≤ 4 đâu a :vv