Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(-x^2+4x+y^2-12y+47\)
\(=-\left(x^2-4x-y^2+17y-47\right)\)
\(=-\left[x^2-4x+4-\left(y^2-12y+36\right)-15\right]\)
\(=-\left[\left(x-2\right)^2-\left(y-6\right)^2-15\right]\)
Vì \(\left(x-2\right)^2-\left(y-6\right)^2-15\ge-15\forall x\)
\(\Rightarrow-\left[\left(x-2\right)^2-\left(y-6\right)^2-15\right]\le15\)
Vậy GTLN của bt trên là 15 \(\Leftrightarrow x=2;y=6\)
b. \(-x^2-x-y^2-3y+13\)
\(=\frac{1}{4}\left(-4x^2-4x-4y^2-12y+52\right)\)
\(=\frac{1}{4}\left[-\left(2x+1\right)^2-\left(2y+3\right)^2+42\right]\)
Vì \(\frac{1}{4}\left[-\left(2x+1\right)^2-\left(2y+3\right)^2+42\right]\le42\forall x;y\)
\(\Rightarrow-\left(2x+1\right)^2-\left(2y+3\right)^2+42\le\frac{21}{2}\forall x;y\)
Vậy GTLN của bt trên là 21/2 \(\Leftrightarrow x=-\frac{1}{2};y=-\frac{3}{2}\)
b)
M = - x2 - x - y2 - 3y + 13
4M = - 4x2 - 4x - 4y2 - 12y + 52
= - (2x + 1)2 - (2y + 3)2 + 42 \(\le\) 42
\(M\le\dfrac{21}{2}\)
Dấu "=" xảy ra khi \(x=-\dfrac{1}{2}\) và \(y=-\dfrac{3}{2}\)
a) \(-x^2+7x+15\Leftrightarrow-\left(x^2-7x-15\right)\Leftrightarrow-\left(x^2-7x+\dfrac{49}{4}-\dfrac{109}{4}\right)\)
\(\Leftrightarrow-\left(\left(x-\dfrac{7}{2}\right)^2-\dfrac{109}{4}\right)\Leftrightarrow-\left(x-\dfrac{7}{2}\right)^2+\dfrac{109}{4}\le\dfrac{109}{4}\forall x\)
\(\Rightarrow\) GTLN của biểu thức là \(\dfrac{109}{4}\) khi \(-\left(x-\dfrac{7}{2}\right)^2=0\Leftrightarrow x-\dfrac{7}{2}=0\Leftrightarrow x=\dfrac{7}{2}\)
vậy GTLN của biểu thức là \(\dfrac{109}{4}\) khi \(x=\dfrac{7}{2}\)
b) \(-x^2-5x+11\Leftrightarrow-\left(x^2+5x-11\right)\Leftrightarrow-\left(x^2+5x+\dfrac{25}{4}-\dfrac{69}{4}\right)\)
\(\Leftrightarrow-\left(\left(x+\dfrac{5}{2}\right)^2-\dfrac{69}{4}\right)\Leftrightarrow-\left(x+\dfrac{5}{2}\right)^2+\dfrac{69}{4}\le\dfrac{69}{4}\forall x\)
\(\Rightarrow\) GTLN của biểu thức là \(\dfrac{69}{4}\) khi \(-\left(x+\dfrac{5}{2}\right)^2=0\Leftrightarrow x+\dfrac{5}{2}=0\Leftrightarrow x=\dfrac{-5}{2}\)vậy GTLN của biểu thức là \(\dfrac{69}{4}\) khi \(x=\dfrac{-5}{2}\)
\(a,A=3-4x-x^2\)
\(=-\left(x^2+4x+4\right)+7\)
\(=-\left(x+2\right)^2+7\)
Với mọi giá trị của x ta có:
\(\left(x+2\right)^2\ge0\Rightarrow-\left(x+2\right)^2\le0\)
\(\Rightarrow-\left(x+2\right)^2+7\le7\)
Vậy Max A = 7 khi \(x+2=0\Rightarrow x=-2\)
\(b,B=2x-x-3x^2=x-3x^2\)
\(=-3\left(x^2-\dfrac{1}{3}x+\dfrac{1}{36}\right)+\dfrac{1}{12}\)
\(=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}\)
Với mọi giá trị của x ta có:
\(\left(x-\dfrac{1}{6}\right)^2\ge0\Rightarrow-3\left(x-\dfrac{1}{6}\right)^2\le0\)
\(\Rightarrow-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}\le\dfrac{1}{12}\)
Vậy Max B = \(\dfrac{1}{12}\) khi \(x-\dfrac{1}{6}=0\Rightarrow x=\dfrac{1}{6}\)
\(c,C=2-x^2-y^2-2\left(x+y\right)=2-x^2-y^2-2x-2y\)\(=4-\left(x^2+2x+1\right)-\left(y^2+2y+1\right)\)
\(=4-\left(x+1\right)^2-\left(y+1\right)^2\)
Với mọi giá trị của x , ta có:
\(\left(x+1\right)^2\ge0;\left(y+1\right)^2\ge0\)
\(\Rightarrow4-\left(x+1\right)^2-\left(y+1\right)^2\le4\)
Vậy Max C = 4 khi \(\left\{{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-1\end{matrix}\right.\)
\(d,D=-x^2+4x-9=-\left(x^2-4x+4\right)-5\) \(=-\left(x-2\right)^2-5\)
Với mọi giá trị của x ta có:
\(\left(x-2\right)^2\ge0\Rightarrow-\left(x-2\right)^2\le0\)
\(\Rightarrow-\left(x-2\right)^2-5\le-5\)
Vậy Max D = -5 khi \(x-2=0\Rightarrow x=2\)
\(e,E=-x^2+4x-y^2-12y+47\)
\(=-\left(x^2-4x+4\right)-\left(y^2+12y+36\right)+87\)
\(=-\left(x-2\right)^2-\left(y+6\right)^2+87\)
Với mọi giá trị của x ta có:
\(-\left(x-2\right)^2\le0;-\left(y+6\right)\le0\)
\(\Rightarrow-\left(x-2\right)^2-\left(y+6\right)^2+87\le87\)
Vậy Max E = 87
Để E = 87 thì \(\left\{{}\begin{matrix}x-2=0\\y+6=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=-6\end{matrix}\right.\)
\(f,F=-x^2-x-y^2-3y+13\)
\(=-\left(x^2+x+\dfrac{1}{4}\right)-\left(y^2+3y+\dfrac{9}{4}\right)+\dfrac{31}{2}\)
\(=-\left(x+\dfrac{1}{2}\right)^2-\left(y+\dfrac{3}{2}\right)^2+\dfrac{31}{2}\)
Với mọi giá trị của x ta có:
\(-\left(x+\dfrac{1}{2}\right)^2\le0;-\left(y+\dfrac{3}{2}\right)^2\le0\)
\(\Rightarrow-\left(x+\dfrac{1}{2}\right)^2-\left(y+\dfrac{3}{2}\right)^2+\dfrac{31}{2}\le\dfrac{31}{2}\)
Vậy Max F = \(\dfrac{31}{2}\) khi \(\left\{{}\begin{matrix}x+\dfrac{1}{2}=0\\y+\dfrac{3}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
a, \(A=-x^2+2x+2\)
\(=-\left(x^2-2x-2\right)=-\left(x^2-2x+1-3\right)\)
\(=-\left(x-1\right)^2+3\le3\)
Dấu " = " khi \(-\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy \(MAX_A=3\) khi x = 1
b, \(B=-x^2-8x+17\)
\(=-\left(x^2+8x-17\right)\)
\(=-\left(x^2+8x+16-33\right)\)
\(=-\left(x+4\right)^2+33\le33\)
Dấu " = " khi \(-\left(x+4\right)^4=0\Leftrightarrow x=-4\)
Vậy \(MAX_B=33\) khi x = -4
c, \(C=-x^2+7x+15\)
\(=-\left(x^2-\dfrac{7}{2}x.2+\dfrac{49}{4}-\dfrac{109}{4}\right)\)
\(=-\left(x-\dfrac{7}{2}\right)^2+\dfrac{109}{4}\le\dfrac{109}{4}\)
Dấu " = " khi \(-\left(x-\dfrac{7}{2}\right)^2=0\Leftrightarrow x=\dfrac{7}{2}\)
Vậy \(MAX_C=\dfrac{109}{4}\) khi \(x=\dfrac{7}{2}\)
d, \(D=-x^2-5x+11\)
\(=-\left(x^2+\dfrac{5}{2}.x.2+\dfrac{25}{4}-\dfrac{69}{4}\right)\)
\(=-\left(x+\dfrac{5}{2}\right)^2+\dfrac{69}{4}\le\dfrac{69}{4}\)
Dấu " = " khi \(-\left(x+\dfrac{5}{2}\right)^2=0\Leftrightarrow x=\dfrac{-5}{2}\)
Vậy \(MAX_D=\dfrac{69}{4}\) khi \(x=\dfrac{-5}{2}\)
f, sai đề à?
g, \(G=-x^2-x-y^2-3y+13\)
\(=-\left(x^2+x+y^2+3y-13\right)\)
\(=-\left(x^2+\dfrac{1}{2}x.2.+\dfrac{1}{4}+y^2+\dfrac{3}{2}.x.2+\dfrac{9}{4}-15,5\right)\)
\(=-\left(x+\dfrac{1}{2}\right)^2-\left(y+\dfrac{3}{2}\right)^2+15,5\le15,5\)
Dấu " = " khi \(\left\{{}\begin{matrix}-\left(x+\dfrac{1}{2}\right)^2=0\\-\left(y+\dfrac{3}{2}\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{2}\\y=\dfrac{-3}{2}\end{matrix}\right.\)
Vậy \(MAX_G=15,5\) khi \(\left\{{}\begin{matrix}x=\dfrac{-1}{2}\\y=\dfrac{-3}{2}\end{matrix}\right.\)
bài 4 câu (g) kết thúc
\(G=13-\left(x^2+x+y^2+3y\right)\)
\(G=13+\dfrac{5}{2}-\left(x^2+x+\dfrac{1}{4}+y^2+3y+\dfrac{9}{4}\right)\)
\(G=\dfrac{31}{2}-\left(x+\dfrac{1}{2}\right)^2-\left(y+\dfrac{3}{2}\right)^2\le\dfrac{31}{2}\)
GTNN G=31/2
dẳng thức x=-1/2; y =-3/2
* Mỗi bài mình chỉ làm một nữa thôi bạn nhé
Bài 1 :
\(a.\)
\(x^2-8x+19\)
\(=\left(x^2-8x+16\right)+3\)
\(=\left(x-4\right)^2+3\)
Vì \(\left(x-4\right)^2+3\ge0\)
Vậy \(x^2-8x+19>0\)
\(b.\)
\(x^2+y^2-4x+2\)
\(=\left(x^2-4x+2\right)+y^2\)
\(=\left(x-\sqrt{2}\right)^2+y^2\)
Vì \(\left(x-\sqrt{2}\right)^2+y^2\ge0\)
Vậy \(x^2+y^2-4x+2>0\)
Bài 2 :
\(a.\)
\(-x^2+2x-7\)
\(=-\left(x^2-2x+7\right)\)
\(=-\left[\left(x^2-2x+1\right)+6\right]\)
\(=-\left[\left(x-1\right)^2+6\right]\)
Vì \(-\left[\left(x-1\right)^2+6\right]\le0\)
Vậy \(-x^2+2x-7< 0\)
\(b.\)
\(-x^2-3x-5\)
=\(-\left(x^2+3x+5\right)\)
\(=-\left(x^2+2x.1,5+1,5^2+\dfrac{11}{4}\right)\)
\(=-\left[\left(x+1,5\right)^2+\dfrac{11}{4}\right]\le0\)
Vậy \(-x^2-3x-5< 0\)
Bài 3 :
\(a.\)
\(x^2+10x+27\)
\(=\left(x^2+10x+25\right)+2\)
\(=\left(x+5\right)^2+2\ge0+2=2\)
Dấu " = " xảy ra khi và chỉ khi :
\(\left(x+5\right)^2=0\)
\(\Rightarrow x=-5\)
Vậy : GTNN của biểu thức bằng \(2\Leftrightarrow x=-5\)
\(b.\)
\(x^2+x+7\)
\(=x^2+2x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{27}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{27}{4}\ge=0+\dfrac{27}{4}=\dfrac{27}{4}\)
Dấu " = " xảy ra khi và chỉ khi :
\(\left(x+\dfrac{1}{2}\right)^2=0\)
\(\Rightarrow x=-\dfrac{1}{2}\)
Vậy : GTNN của biểu thức bằng \(\dfrac{27}{4}\Leftrightarrow x=-\dfrac{1}{2}\)
Bài 4 :
\(a.\)
\(-x^2+2x+2\)
\(=-\left(x^2-2x-2\right)\)
\(=-\left\{\left[x^2-2x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]+\dfrac{7}{4}\right\}\)
\(=-\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right]\)
\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{7}{4}\ge0-\dfrac{7}{4}=-\dfrac{7}{4}\)
Dấu " = " xảy ra khi và chỉ khi :
\(\left(x-\dfrac{1}{2}\right)^2=0\)
\(\Rightarrow x=\dfrac{1}{2}\)
Vậy : GTNN của biểu thức bằng \(-\dfrac{7}{4}\Leftrightarrow x=\dfrac{1}{2}\)
\(b.\)
\(-x^2-8x+17\)
\(=-\left(x^2+8x-17\right)\)
\(=-2\left[x^2+4x-\dfrac{17}{2}\right]\)
\(=-2\left[x^2+2x.2+4+\dfrac{9}{2}\right]\)
\(=-2\left[\left(x-2\right)^2+\dfrac{9}{2}\right]\)
\(=\left(x-2\right)^2-\dfrac{9}{2}\ge0-\dfrac{9}{2}=-\dfrac{9}{2}\)
Dấu " = " xảy ra khi và chỉ khi :
\(\left(x-2\right)^2=0\)
\(\Rightarrow x=2\)
Vậy : GTNN của biểu thức bằng \(-\dfrac{9}{2}\Leftrightarrow x=2\)
\(c.\)
\(-x^2+7x+15\)
\(=-\left(x^2-7x-15\right)\)
\(=-2\left(x^2-\dfrac{7}{2}x-\dfrac{15}{2}\right)\)
\(=-2\left[x^2-2x.\dfrac{7}{2}+\dfrac{49}{4}-\dfrac{19}{4}\right]\)
\(=-2\left[\left(x-\dfrac{7}{2}\right)^2-\dfrac{19}{4}\right]\)
\(=\left[\left(x-\dfrac{7}{2}\right)^2+\dfrac{19}{4}\right]\ge0+\dfrac{19}{4}=\dfrac{19}{4}\)
Dấu " = " xảy ra khi và chỉ khi :
\(\left(x-\dfrac{7}{2}\right)^2=0\)
\(\Rightarrow x=\dfrac{7}{2}\)
Vậy : GTNN của biểu thức bằng \(\dfrac{19}{4}\Leftrightarrow x=\dfrac{7}{2}\)
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2≤0+21=21
Dấu = khi x+4=0 <=>x=-4
Bài 1:
c)C=x2+5x+8
=x2+5x+\(\left(\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)
=\(\left(x+\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)\(\ge\dfrac{7}{4}\)
Vậy \(C_{min}=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{5}{2}\)
\(a,x^2+x+1=\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì: \(\left(x+\frac{1}{2}\right)^2\ge0,\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4},\forall x\)
Dấu '' = '' xảy ra khi : \(x+\frac{1}{2}=0\Rightarrow x=\frac{-1}{2}\)
Vậy GTLN của biểu thức = 3/4 khi x=-1/2
\(b,2+x-x^2=-x^2+x+2\)
\(=-\left(x^2-x-2\right)=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{9}{4}\)
\(=-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\)
Vì: \(-\left(x-\frac{1}{2}\right)^2\le0,\forall x\)
\(\Rightarrow-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4},\forall x\)
Dấu '' = '' xảy ra khi: x-1/2=0 => x=1/2
Vậy GTNN của biểu thức = 9/4 khi x=1/2
\(c,x^2-4x+1=\left(x^2-2.x.2+4\right)-3=\left(x-2\right)^2-3\)
Vì \(\left(x-2\right)^2\ge0,\forall x\Rightarrow\left(x-2\right)^2-3\ge-3,\forall x\)
Dấu ''='' xảy ra khi x-2=0 => x=2
Vậy GTLN của biểu thức = -3 khi x=2
Các câu khác tương tự
\(d,4x^2+4x+11=\left[\left(2x\right)^2+2.2x.1+1\right]+10=\left(2x+1\right)^2+10\)
Vì \(\left(2x+1\right)^2\ge0,\forall x\Rightarrow\left(2x+1\right)^2+10\ge10,\forall x\)
Dấu ''='' xảy ra khi 2x+1=0 => x=-1/2
Vậy GTNN của biểu thức =10 khi x=-1/2
\(e,3x^2-6x+1=3\left(x^2-2x+1\right)-2=3\left(x-1\right)^2-2\)
Vì \(3\left(x-1\right)^2\ge0,\forall x\Rightarrow3\left(x-1\right)^2-2\ge-2,\forall x\)
Dấu ''='' xảy ra khi x-1=0 => x=1
Vậy GTNN của biểu thức =-2 khi x=1
\(f,x^2-2x+y^2-4y+6=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+1\)
Vì \(\left(x-1\right)^2\ge0,\forall x;\left(y-2\right)^2\ge0,\forall y\)
\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+1\ge1,\forall x,y\)
Dấu ''='' xảy ra khi \(\orbr{\begin{cases}x-1=0\\y-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\y=2\end{cases}}}\)
Vậy GTNN của biểu thức =1 khi x=1 và y=2
\(x^2+4x-y^2-12y+47\)
\(=\left(x^2+4x+4\right)-\left(y^2+12y+36\right)+79\)
\(=\left(x+2\right)^2-\left(y+6\right)^2+79\)
Vậy Min của biểu thức trên là 79 \(\Leftrightarrow x=-2;y=-6\)
e, \(-x^2+4x+y^2-12y+47\)
\(=-\left(x^2-4x-y^2+12y-47\right)\)
\(=-\left[x^2-4x+4-\left(y^2-12y+36\right)-15\right]\)
\(=-\left[\left(x-2\right)^2-\left(y-6\right)^2-15\right]\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-2\right)^2-\left(y-6\right)^2-15\ge-15\)
\(\Rightarrow-\left[\left(x-2\right)^2-\left(y-6\right)^2-15\right]\le15\)
Để \(-\left[\left(x-2\right)^2-\left(y-6\right)^2-15\right]=15\) thì
\(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-6\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\)
Vậy..................
Các câu còn lại tương tự!
Chúc bạn học tốt!!!
d)\(-x^2-5x+11\)
=\(-\left(x^2+5x-11\right)\)
=\(-\left(x+\dfrac{5}{2}\right)^2+\dfrac{69}{4}\)
Với mọi x thì \(\dfrac{69}{4}-\left(x+\dfrac{5}{2}\right)^2=< \dfrac{69}{4}\)
Để \(\dfrac{69}{4}-\left(x+\dfrac{5}{2}\right)^2=\dfrac{69}{4}\) thì
\(\left(x+\dfrac{5}{2}\right)^2=0\)
=>\(x+\dfrac{5}{2}=0\)
=>\(x=-\dfrac{5}{2}\)
Vậy...
Các câu sau t ương tự