Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2+5/6+11/12+19/20+29/30+41/42+55/56+71/72
=10-(1/2+1/6+..+1/110)
=10-(1/1x2+1/2x3+...+1/10x11)
=10-(1-1/2+1/2-1/3+...+1/10-1/11)
=10-(1-1/11)
=10-10/11
=100/11
a) \(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{6}+1-\frac{1}{12}+...+1-\frac{1}{90}\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\right)\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\right)\)
Từ 2 đến 9 có : ( 9 - 2 ) / 1 + 1 = 8 ( số hạng ) => có 8 số 1
\(\Rightarrow8-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=8-\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=8-\frac{2}{5}=\frac{38}{5}\)
b) \(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+...+\frac{109}{110}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+...+1-\frac{1}{110}\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{10\cdot11}\right)\)
Từ 1 đến 10 có : ( 10 - 1 ) / 1 + 1 = 10 ( số hạng ) => có 10 số 1
\(\Rightarrow10-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=10-\left(1-\frac{1}{11}\right)\)
\(=10-\frac{10}{11}=\frac{100}{11}\)
Câu hỏi của Nguyễn Ngọc Mai Anh - Toán lớp 5 - Học toán với OnlineMath
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\)\(\frac{55}{66}\)\(+\frac{71}{72}\)\(+\frac{89}{90}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+...+1-\frac{1}{90}\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\right)\)
\(=9-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=8+\frac{1}{10}=\frac{81}{10}\)
9 - A = 1 - 1/2 + 1-5/6 + 1 - 11/12 + ... + 1-89/90
9 - A = 1/2 + 1/6 + 1/12 + .. + 1/90
9 - A = 1/1.2 + 1/2.3 + 1/3.4 + .. + 1/9.10
9-A = 1/1 - 1/2 + 1/2 - 1/3 + ... + 1/9 - 1/10
9 -A = 1/1 - 1/10
9 - A = 9/10
A = 9 - 9/10
A = 81/10
ta có
\(B=\frac{1}{2}+\frac{1}{6}+................+\frac{1}{90}=\frac{1}{1x2}+.....+\frac{1}{9x10}=1-\frac{1}{2}+...+\frac{1}{9}-\frac{1}{10}=\frac{9}{10}\)
Dễ thấy B+A=1+1+...+1=10
=>A=10-B=\(10-\frac{9}{10}=\frac{91}{10}\)
\(A=\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+....+\frac{89}{90}\)
\(A=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+..+\left(1-\frac{1}{90}\right)\)
\(A=\left(1-\frac{1}{1.2}\right)+\left(1-\frac{1}{2.3}\right)+\left(1-\frac{1}{3.4}\right)+...+\left(1-\frac{1}{9.10}\right)\)
\(A=\left(1+1+1+...+1\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)\)
9 số 1
\(A=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=9-\left(1-\frac{1}{10}\right)\)
\(A=9-\frac{9}{10}\)
\(A=\frac{81}{10}\)
Ủng hộ mk nha ^-^
1/2+5/6+11/12+19/20+29/30+41/42+55/56+71/72+89/90+109/110= 1 - 1/2 + 1 - 1/6 + 1 - 1/12 .....+1 - 1/110= 10 - ( 1/2 + 1/6 + ...+ 1/110) = 10 - ( 1 - 1/ 2+ 1/2 - 1/ 3+ 1/3 - 1/4 ....+ 1/10 - 1/11)= 10 - (1 - 1/11)= 10 - 10/11 = 100/11
\(A=\frac{1}{2}+\frac{5}{6}+...+\frac{89}{90}\)
\(A=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{90}\right)\)
\(A=9-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\right)\)
Gọi \(A=9-B\)
\(B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(B=1-\frac{1}{10}=\frac{9}{10}\)
\(A=9-\frac{9}{10}\)
\(A=\frac{90-9}{10}=\frac{81}{10}\)
Ko đúng hơi tiếc :D
A = \(\dfrac{1}{2}\) + \(\dfrac{5}{6}\) + \(\dfrac{11}{12}\) + \(\dfrac{19}{20}\) + \(\dfrac{29}{30}\) + \(\dfrac{41}{42}\) + \(\dfrac{55}{56}\)
A = (1 - \(\dfrac{1}{2}\)) + ( 1 - \(\dfrac{1}{6}\)) + (1 - \(\dfrac{1}{12}\)) + (1 - \(\dfrac{1}{20}\)) +(1-\(\dfrac{1}{30}\))+(1-\(\dfrac{1}{42}\))+(1-\(\dfrac{1}{56}\))
A = (1 + 1+1 + 1 + 1+1+1)- (\(\dfrac{1}{2}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{12}\)+\(\dfrac{1}{20}\)+\(\dfrac{1}{30}\)+\(\dfrac{1}{42}\)+\(\dfrac{1}{56}\))
A = 7 - (\(\dfrac{1}{1\times2}\)+\(\dfrac{1}{2\times3}\)+\(\dfrac{1}{3\times4}\)+\(\dfrac{1}{4\times5}\)+\(\dfrac{1}{5\times6}\)+\(\dfrac{1}{6\times7}\)+\(\dfrac{1}{7\times8}\))
A = 7 - (\(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)+ \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{8}\))
A = 7 - (\(\dfrac{1}{1}\) - \(\dfrac{1}{8}\))
A = 7 - \(\dfrac{7}{8}\)
A = \(\dfrac{49}{8}\)
Kq = 49/8 nha