Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
a chia 4 dư 3 => a - 1 chia hết cho 4
a chia 5 dư 4 => a - 1 chia hết cho 5
a chia 6 dư 5 => a - 1 chia hết cho 6
=> a - 1 \(\in\)BC (4, 5, 6)
4 = 22
5 = 5
6 = 2 . 3
BCNN (4, 5, 6) = 22 . 5 . 3 = 60
BC (4, 5, 6) = B (60) = {0 ; 60 ; 120 ; 180 ; ...}
Vậy a \(\in\){59 ; 119 ; 179 ; ...}
mà a chia hết cho 13 nên chọn a = 299.
Vậy a = 299.
2/ Vì a là số có ba chữ số nên dạng tổng quát của a là abc.
Gọi là số nhỏ nhất thỏa a chia 3 dư 1, chia 4 dư 2, chia 5 dư 3, chia 6 dư 4
Thế thì a + 2 chia hết cho 3, 4, 5 và 6
=> a + 2 là BC (3, 4, 5, 6)
BCNN (3, 4, 5, 6) = 60
=> a + 2 là B(60) = { 60, 120, 180, 240, 300, 360, 420, 480, 540, 600, ...}
Trong các số trên chỉ có số 600 là thỏa
vì a + 2 = 600
=> a = 600 - 2 = 598 chia hết cho 13.
Vậy a = 598
Gọi số đó là a
a chia cho 4 dư 3 => a + 1 chia hết cho 3
a chia cho 5 dư 4 => a + 1 chia hết cho 4
a chia 6 dư 5 => a + 1 chia hết cho 6
Vậy a + 1 chia hết cho 3;4;6 => a + 1 chia hết cho BCNN(3;4;6) = 12
=> a + 1 + 12 chia hết cho 12 => a + 13 chia hết cho 12
Mà a chia hết cho 13 nên a+ 13 chia hết cho 13
Vậy a + 13 chia hết cho 12 và 13 nên chia hết cho 12.13 = 156
=> a + 13 = 156n => a = 156n - 13 (n là số tự nhiên)
Vậy...
tham khảo ở đây nha :)) https://olm.vn/hoi-dap/question/791527.html
a) Số chia cho 4 có thể có dư là: 0; 1; 2; 3
Số chia cho 5 có thể có dư là: 0; 1; 2; 3; 4
Số chia cho 6 có thể có dư là: 0; 1; 2; 3; 4; 5
b) Dạng tổng quát của số chia hết cho 3 là: 3k
Dạng tổng quát của số chia hết cho 3 dư 1 là: 3k + 1
Dạng tổng quát của số chia hết cho 3 dư 2 là: 3k + 2
( Với k ∈ N)
Số dư của các phép chia cho 3;4;5;6 đều bé hơn số chia 2 đơn vị (3-1=4-2=5-3=6-4=2) nên khi thêm 2 vào số bị chia sẽ chia hết cho 3;4;5;6 và số này chia cho 11 dư 2.
Số bé nhất chia hết cho 3;4;5;6 là: 3x4x5=60
mà 60:11=5 (dư5)
Để chia cho 11 dư 2 thì gấp số dư lên một số lần thì số cần tìm cũng gấp 60 lên một số lần tương ứng.
Thử chọn:
5x1=5 chia cho 11 dư5
5x2=10 chia cho 11 dư 10
5x3=15 chia cho 11 dư 4
5x4=20 chia cho 11 dư 9
5x5=25 chia cho 11 dư 3
5x6=30 chia cho 11 dư 8
Câu a)
Gọi đó là số A. Nhận thấy A+2 chia hết cho 3;4;5;6
=> A+2 nhỏ nhất = BSCNN(3,4,5,6) = 60
Số A có dạng tổng quát, với n là số tự nhiên, là
A= 60.n-2
Vấn đề còn lại là tìm điều kiện của số tự nhiên n để Achc 13. Ta có:
A= 65.n -5.n-15+13
A=13.(5.n+1) - 5.(n+3)
Từ đẳng thức trên ta thấy, để A chia hết cho 13 thì 5.(n+3) phải chia hết cho 13 => (n+3) phải chia hết cho 13 => n= 13.k-3 với k là số tự nhiên, k=1,2,3...
khi đó:
A=60.(13.k-3)-2
A=780.k-182
Câu b)
Số nhỏ nhất thỏa mãn đề bài ứng với k=1, khi đó
A=598