K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2017

a/ ĐK x-1 khác 0 ; x^2+x khác 0 ; x^3-x khác 0 ; 1-x^2 khác 0 

=> x khác {1;0;-1} 

b/ \(B=\frac{1}{x-1}-\frac{x^3-x}{x^2+x}.\left(\frac{1}{x^2-2x+1}+\frac{1}{1-x^2}\right)\)

\(=\frac{1}{x-1}-\frac{x\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}.\left(\frac{1}{\left(x-1\right)^2}+\frac{1}{\left(1+x\right)\left(1-x\right)}\right)\)

\(=\frac{1}{x-1}-\left(x-1\right).\left(\frac{1+x-x+1}{\left(x-1\right)^2\left(1+x\right)}\right)=\frac{1}{x-1}-\frac{1}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x+1-1}{\left(x-1\right)\left(x+1\right)}=\frac{x}{x^2-1}\)

19 tháng 2 2020

Câu 1 :

a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)

b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)

\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)

\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)

\(\Leftrightarrow2x^2+8x+6=0\)

\(\Leftrightarrow x^2+4x+4-1=0\)

\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)

Vậy : \(x=-3\) thì P = 1.

Bài 1: 

a: \(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}+\dfrac{4}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2-2x+1-x^2-2x-1+4}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-4x+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{-4}{x+1}\)

b: \(=\dfrac{xy\left(x^2+y^2\right)}{x^4y}\cdot\dfrac{1}{x^2+y^2}=\dfrac{x}{x^4}=\dfrac{1}{x^3}\)

c: Đề thiếu rồi bạn

26 tháng 1 2017

a, ĐKXĐ: x\(\ne\)5, x\(\ne\)0, x\(\ne\)-5

b, B = \(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)

     = \(\frac{x^3+2x^2}{2x\left(x+5\right)}+\frac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)

     =\(\frac{x^3+2x^2}{2x\left(x+5\right)}+\frac{2x^2-50}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)

    = \(\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)

    =\(\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)=\(\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)=\(\frac{x-1}{2}\)

Với B = 0 thì\(\frac{x-1}{2}\)=0 => x = 1

Với B = \(\frac{1}{4}\)thì \(\frac{x-1}{2}\)=\(\frac{1}{4}\)=> x = 1,5

5 tháng 10 2019

a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)

b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)

\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)

11 tháng 2 2020

a) \(ĐKXĐ:x\ne1\)

b) \(\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right):\left(1-\frac{2x}{x^2+1}\right)\)

\(=\left(\frac{1}{x-1}-\frac{2x}{x\left(x^2+1\right)-\left(x^2+1\right)}\right):\frac{x^2+1-2x}{x^2+1}\)

\(=\left(\frac{1}{x-1}-\frac{2x}{\left(x^2+1\right)\left(x-1\right)}\right):\frac{\left(x-1\right)^2}{x^2+1}\)

\(=\frac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}.\frac{x^2+1}{\left(x-1\right)^2}\)

\(=\frac{\left(x-1\right)^2}{\left(x-1\right)^3}\)

\(=\frac{1}{x-1}\)

c) Với \(\forall x\)(\(x\ne1\)) thì biểu thức được xác định .

P/s : Theo mik câu c nên chuyển thành : Tìm x để biểu thức đạt giá trị nguyên.

Tại thấy câu c k khác j câu a !

30 tháng 10 2020

a) Đk: x > 0 và x khác +-1

Ta có: A = \(\left(\frac{x+1}{x}-\frac{1}{1-x}-\frac{x^2-2}{x^2-x}\right):\frac{x^2+x}{x^2-2x+1}\)

A = \(\left[\frac{\left(x-1\right)\left(x+1\right)+x-x^2+2}{x\left(x-1\right)}\right]:\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)

A = \(\frac{x^2-1+x-x^2+2}{x\left(x-1\right)}\cdot\frac{\left(x-1\right)^2}{x\left(x+1\right)}\)

A = \(\frac{x+1}{x}\cdot\frac{x-1}{x\left(x+1\right)}=\frac{x-1}{x^2}\)

b) Ta có: A = \(\frac{x-1}{x^2}=\frac{1}{x}-\frac{1}{x^2}=-\left(\frac{1}{x^2}-\frac{1}{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\frac{1}{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra <=> 1/x - 1/2 = 0 <=> x = 2 (tm)

Vậy MaxA = 1/4 <=> x = 2

24 tháng 1 2020

a) A có nghĩa \(\Leftrightarrow\left(x+1\right)^2-3x\ne0\)\(x^3+1\ne0\),\(x+1\ne0\),\(3x^2+6x\ne0\) và \(x^2-4\ne0\)

+) \(\left(x+1\right)^2-3x\ne0\Leftrightarrow x^2+2x+1-3x\ne0\)

\(\Leftrightarrow x^2-x+1\ne0\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ne0\)(luôn đúng)

+) \(x^3+1\ne0\Leftrightarrow x^3\ne-1\Leftrightarrow x\ne-1\)

+) \(x+1\ne0\Leftrightarrow x\ne-1\)

+) \(3x^2+6x\ne0\Leftrightarrow3x\left(x+2\right)\ne0\)

\(\Leftrightarrow x\ne0;x\ne-2\)

+) \(x^2-4\ne0\Leftrightarrow x^2\ne4\Leftrightarrow x\ne\pm2\)

Vậy ĐKXĐ của A là \(x\ne-1;x\ne0;x\ne\pm2\)

24 tháng 1 2020

a, \(Đkxđ:\hept{\begin{cases}x\ne-1\\x\ne0\\x\ne-2\end{cases}}\)

\(A=\left[\frac{\left(x+1\right)^2}{\left(x+1\right)^2-3x}-\frac{2x^2+4x-1}{x^3+1}-\frac{1}{x+1}\right]:\frac{x^2-4}{3x^2+6x}\)

\(=\left[\frac{x^2+2x+1}{x^2-x+1}-\frac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{1}{x+1}\right].\frac{3x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{\left(x^2+2x+1\right)\left(x+1\right)-2x^2-4x+1-\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{3x}{x-2}\)

\(=\frac{x^3+1}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{3x}{x-2}\)

\(=\frac{3x}{x-2}=3+\frac{6}{x-2}\)

b, Để A nguyên thì \(\Leftrightarrow6\)chia hết cho \(x-2\)

Hay \(\left(x-2\right)\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

x-2-6-3-2-11236
x-4-1013458

Vậy ............................