Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x>0;x\ne9\)
\(P=\left(\dfrac{x+7}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}-\dfrac{4\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\right)\left(\dfrac{\sqrt{x}+6}{\sqrt{x}}\right)\)
\(=\left(\dfrac{x+7-4\sqrt{x}-4+\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\right)\left(\dfrac{\sqrt{x}+6}{\sqrt{x}}\right)\)
\(=\left(\dfrac{x-3\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\right).\left(\dfrac{\sqrt{x}+6}{\sqrt{x}}\right)\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}.\dfrac{\left(\sqrt{x}+6\right)}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}+6}{\sqrt{x}+1}\)
b.
Ta có \(P=\dfrac{\sqrt{x}+1+5}{\sqrt{x}+1}=1+\dfrac{5}{\sqrt{x}+1}\)
Do \(\sqrt{x}+1>0\Rightarrow\dfrac{5}{\sqrt{x}+1}>0\Rightarrow P>1\)
\(P=\dfrac{6\left(\sqrt{x}+1\right)-5\sqrt{x}}{\sqrt{x}+1}=6-\dfrac{5\sqrt{x}}{\sqrt{x}+1}\)
Do \(\left\{{}\begin{matrix}5\sqrt{x}>0\\\sqrt{x}+1>0\end{matrix}\right.\) ;\(\forall x>0\Rightarrow\dfrac{5\sqrt{x}}{\sqrt{x}+1}>0\)
\(\Rightarrow P< 6\Rightarrow1< P< 6\)
Mà P nguyên \(\Rightarrow P=\left\{2;3;4;5\right\}\)
- Để \(P=2\Rightarrow\dfrac{\sqrt{x}+6}{\sqrt{x}+1}=2\Rightarrow\sqrt{x}+6=2\sqrt{x}+2\Rightarrow x=16\)
- Để \(P=3\Rightarrow\dfrac{\sqrt{x}+6}{\sqrt{x}+1}=3\Rightarrow\sqrt{x}+6=3\sqrt{x}+3\Rightarrow\sqrt{x}=\dfrac{3}{2}\Rightarrow x=\dfrac{9}{4}\)
- Để \(P=4\Rightarrow\dfrac{\sqrt{x}+6}{\sqrt{x}+1}=4\Rightarrow\sqrt{x}+6=4\sqrt{x}+4\Rightarrow\sqrt{x}=\dfrac{2}{3}\Rightarrow x=\dfrac{4}{9}\)
- Để \(P=5\Rightarrow\dfrac{\sqrt{x}+6}{\sqrt{x}+1}=5\Rightarrow\sqrt{x}+6=5\sqrt{x}+5\Rightarrow\sqrt{x}=\dfrac{1}{4}\Rightarrow x=\dfrac{1}{16}\)
a, ĐK: \(x>0;x\ne1\)
\(P=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\dfrac{2\left(x-2\sqrt{x}+1\right)}{x-1}\)
\(=\left[\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]:\dfrac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\left(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}-\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\right).\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}}.\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
a: Ta có: \(P=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\dfrac{2\left(x-2\sqrt{x}+1\right)}{x-1}\)
\(=\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
b: Để P nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-1\)
\(\Leftrightarrow\sqrt{x}-1\in\left\{1;-1;2\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{2;0;3\right\}\)
ha \(x\in\left\{4;9\right\}\)
a) \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}-4}{x-1}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\left(dkxd:x\ge0;x\ne1;x\ne4\right)\)
\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)
\(=\dfrac{x-\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)
\(=\dfrac{x-4}{\sqrt{x}-1}\cdot\dfrac{1}{\sqrt{x}-2}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)
b) Với \(x\ge0;x\ne1;x\ne4\):
Thay \(x=3+2\sqrt{2}\) vào \(P\), ta được:
\(P=\dfrac{\sqrt{3+2\sqrt{2}}+2}{\sqrt{3+2\sqrt{2}}-1}\)
\(=\dfrac{\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot1+1^2}+2}{\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot1+1^2}-1}\)
\(=\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}+2}{\sqrt{\left(\sqrt{2}+1\right)^2}-1}\)
\(=\dfrac{\sqrt{2}+1+2}{\sqrt{2}+1-1}\)
\(=\dfrac{\sqrt{2}+3}{\sqrt{2}}\)
\(=\dfrac{2+3\sqrt{2}}{2}\)
c) Với \(x\ge0;x\ne1;x\ne4\),
\(P=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1+3}{\sqrt{x}-1}=1+\dfrac{3}{\sqrt{x}-1}\)
Để \(P\) có giá trị nguyên thì \(\dfrac{3}{\sqrt{x}-1}\) có giá trị nguyên
\(\Rightarrow 3\vdots\sqrt x-1\\\Rightarrow \sqrt x-1\in Ư(3)\)
\(\Rightarrow\sqrt{x}-1\in\left\{1;3;-1;-3\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{2;4;0;-2\right\}\) mà \(\sqrt{x}\ge0\)
\(\Rightarrow\sqrt{x}\in\left\{2;4;0\right\}\)
\(\Rightarrow x\in\left\{4;16;0\right\}\)
Kết hợp với ĐKXĐ của \(x\), ta được:
\(x\in\left\{0;16\right\}\)
Vậy: ...
\(\text{#}Toru\)
a: Ta có: \(N=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=x-\sqrt{x}+1\)
\(B=\left[\dfrac{\sqrt{x-2}}{\left(\sqrt{x}-1\right)^2}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\sqrt{x}\left(\sqrt{x}-1\right)=\)
\(=\left[\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)}\right]\sqrt{x}\left(\sqrt{x}-1\right)=\)
\(=\left[\dfrac{x+\sqrt{x}-2\sqrt{x}-2-x+\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)}\right]\sqrt{x}\left(\sqrt{x}-1\right)=\)
\(=\left[\dfrac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)}\right]\sqrt{x}\left(\sqrt{x}-1\right)=\)
\(=\dfrac{-2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=-\dfrac{2x}{x-1}\)
b/
\(B=-\dfrac{2\left(x-1\right)+2}{x-1}=-2+\dfrac{2}{x-1}\)
Để B nguyên
\(x-1=\left\{-1;-2;1;2\right\}\Rightarrow x=\left[0;-1;2;3\right]\)
Lời giải:ĐK: $x>0; x\neq 1$;
\(P=\left[\frac{(\sqrt{x}-1)(x+\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}-1)}-\frac{(\sqrt{x}+1)(x-\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}+1)}\right]:\frac{2(\sqrt{x}-1)^2}{(\sqrt{x}-1)(\sqrt{x}+1)}\)
\(=\left(\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}\right):\frac{2(\sqrt{x}-1)}{\sqrt{x}+1}\)
\(=2:\frac{2(\sqrt{x}-1)}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
b)
\(P=\frac{\sqrt{x}+1}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\). Để $P$ nguyên thì $\sqrt{x}-1$ là ước nguyên của $2$
$\Rightarrow \sqrt{x}-1\in\left\{\pm 1;\pm 2\right\}$
$\Rightarrow x\in\left\{0; 2; 9\right\}$
Kết hợp với ĐKXĐ suy ra $x\in\left\{2;9\right\}$
a: \(Q=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\cdot\left(x+\sqrt{x}\right)\)
\(=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\left(x+\sqrt{x}\right)\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\sqrt{x}\cdot\left(\sqrt{x}+1\right)\)
\(=\dfrac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\cdot\left(\sqrt{x}-1\right)}\cdot\sqrt{x}\)
\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\sqrt{x}\)
\(=\dfrac{2\sqrt{x}\cdot\sqrt{x}}{x-1}=\dfrac{2x}{x-1}\)
b: Để Q là số nguyên thì \(2x⋮x-1\)
=>\(2x-2+2⋮x-1\)
=>\(2⋮x-1\)
=>\(x-1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{2;0;3;-1\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{0;2;3\right\}\)
a: \(P=\left(\dfrac{2+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{1}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
b: Để P nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-1\)
\(\Leftrightarrow\sqrt{x}-1\in\left\{-1;1;2\right\}\)
hay \(x\in\left\{0;4;9\right\}\)