p là số nguyên tố lớn hơn 5, chứng minh rằng p 4...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2016

Ta có: p4 – q4 = (p4 – 1 ) – (q4 – 1) ; 240 = 8 .2.3.5

Chứng minh p4 – 1   240

- Do p >5 nên p là số lẻ                                                                              

+ Mặt khác: p4 –1  = (p –1) (p + 1) (p2 +1)                                                 

--> (p-1 và (p+1) là hai số chẵn liên tiếp  => (p – 1) (p+1)  8                   

+ Do p là số lẻ nên p2  là số lẻ ->  p2 +1  2                                                 

- p > 5 nên p có dạng:

   + p = 3k +1 --> p – 1 = 3k + 1 – 1  = 3k   3  --> p4 – 1  3 

   + p = 3k + 2 -->  p + 1  = 3k + 2 + 1  = 3k +3  3  -->  p4 – 1  3             

- Mặt khác, p có thể là dạng:

+ P =  5k +1 --> p – 1  = 5k + 1 – 1  = 5k    5   --> p4 – 1    5

+ p = 5 k+ 2 --> p2 + 1 = (5k +2)2  +1  = 25k2  + 20k +5  5 --> p4 – 1  5  

+ p = 5k +3 --> p2 +1 = 25k2 + 30k +10 --> p4 –1  5

+ p = 5k +4 --> p + 1 = 5k +5  5 --> p4 – 1  5                                            

Vậy p4 – 1  8 . 2. 3 . 5 hay p4 – 1  240

Tương tự ta cũng có q4 – 1  240                                                                   

Vậy: (p4 – 1) – (q4 –1)  = p4 – q4    240

 mk nha các bạn !!!

1 tháng 5 2016

 Edogawa Conan Copy, ko k

11 tháng 2 2016

.p4q4=p4q4−1+1=(p4−1)−(q4−1)
lại có 240=8.2.3.5
ta cần chứng minh (p4−1) ⋮ 240 và (q4−1) ⋮ 240
C/m: (p4−1) ⋮ 240:
(p4−1)=(p−1)(p+1)(p2+1)
vì p là số nguyến tố lớn hơn 5 nên p là số lẻ
⟹(p−1)(p+1) là tích của 2 số lẻ liên tiếp nên chia hết cho 8 (1)
Do p>5 nên:
p=3k+1→p−1=3kp−1 ⋮ 3
hoặc p=3k+2→p+1=3(k+1)→p+1 ⋮ 3 (2)
mặt khác vì p là số lẻ nên p2 là số lẻ →p2+1 là số chẵn nên p2+1 ⋮ 2 (3)
giờ cần chứng minh p4−1 ⋮ 5:
p có thể có dạng:
p=5k+1→p−1 ⋮ 5
p=5k+2→p2+1=25k2+20k+5→p2+1 ⋮ 5
p=5k+3→p2+1=25k2+30k+10→p2+1 ⋮ 5
p=5k+4→p+1=5k+5→p+1 ⋮ 5
p=5k mà p là số nguyến tố nên k=1→p=5 (ko thỏa mãn ĐK)
p4−1 ⋮ 5 (4)
từ (1),(2),(3),(4), suy ra p4−1 chia hết cho 2.3.5.8 hay p4−1 ⋮ 240
chứng minh tương tự, ta có: q4−1 ⋮ 240
Kết luận.......................

7 tháng 2 2020

Mình sắp ngủ rồi giúp bạn câu này, kết bạn nha!

Ta có: p4-q4-(p4-1)-(q4-1); 240 - 8.2.3.5. Ta cần chứng minh p4-1 chia hết cho 240

- Do p>5 nên p là số lẻ

+ Mặt khác: p4-1-(p-1)(p+1)(p2+1)

=> (p-1) và (p+1) là hai số chẵn liên tiếp => (p-1)(p+1) chia hết cho 8

+ Do p là số lẻ nên p2 là số lẻ => p2+1 chia hết cho 2

p > 5 nên p có dạng

+ p-3k+1 => p-1-3k+1-1-3k chia hết cho 3  =>p4 - 1 chia hết cho 3

..............................

Tương tự ta cũng có q4 - 1 chia hết cho 240 . 

Vậy (p4-1)-(q4-1) = p4 - q4 cho 240

Nguồn: Internet

Chúc bạn học tốt !!!

7 tháng 2 2020

ta có p4-1=(p-1)(p+1)(p2+1)

p>5 -> (p-1)(p+1) chia hết cho 8

-> p4-1 chia hết cho 8

p lẻ -> p2 lẻ -> p2+1 chẵn chia hết cho 2

Nếu p= 3k+1 -> p-1 = 3k -> p4-1 chia hết cho 3

Nếu p = 3k+2 -> p +1 = 3k -> p4-1 chia hết cho 3

Vậy p4-1 chia hết cho 3

Nếu p = 5k+1 -> p - 1 chia hết cho 5

Nếu p = 5k +2 -> (p+1)2 = 25k2+ 30k+5 chia hết cho 5

Tự làm tiếp nhé mk phải ngủ đây

p4-1 chia hết cho 5

-> p4-1 chia hết cho 8.2.3.5= 240

Tương tự q4-1 chia hết cho 240

Ta thấy p4-q4= (p4-1)-(q4-1)

(p4-1)-(q4-1) chia hết cho 240

=> p4-qchia hết cho 4

20 tháng 8 2017

Đề sai... VD nhá... 3 là snt. 23-1=7 có 2 ước 2<3... Vô lí...

20 tháng 8 2017

Nhầm !~ Bài này tớ chịu !~ Sr TT

11 tháng 12 2016

P là số nguyên tố và p>3 => p+5, p+7 là sô chẵn đặt p+5=2k=> p+7=2k+2=>(p+5)(p+7)= 2k(2k+2)= 2k2(k+1)= 4k(k+1) chia hết cho 8 

( vì k(k+1) chia hết cho 2 với mọi k thuộc n) 

P là số nguyên tố lớn hơn 3 nên p có dạng 3n+1 hoặc 3n+2

. Xét P= 3n+1=> (p+5)(p+7)= (3n+6)(3n+8) chia hết cho 3 với mọi n thuộc N

. xét p=3n+2=> (p+5)(p+7)= (3n+7)(3n+9) chia hét cho 3 với mọi n thuộc N

(p+5)(p+7) chia hết cho 8 và 3=> (p+5)(p+7) chia hết cho 24

26 tháng 3 2017

cho p là số nguyên tố lớn hơn 3.chứng minh (p+5)(p+7) chia hết cho 24 
các bạn giải hộ mình vs

30 tháng 5 2018

Bài 2 :

Với p là số nguyên tố lớn hơn 3 => p chỉ có dạng hoặc 3k + 1 hoặc 3k + 2

+ Nếu p = 3k + 1 => 2p + 1 = 2 . ( 3k + 1 ) + 1 = 6k + 2 + 1 = 6k + 3 \(⋮\)3 và lớn hơn 3 là hợp số ( loại )

Vì p ko có dạng 3k + 1 nên p có dạng 3k + 2

Với p = 3k + 2 thì 4p + 1 = 4 . ( 3k + 2 ) + 1 = 12k + 8 + 1 = 12k + 9 là hợp số

Vậy ...

Bài 1 :

Ta có \(1994^{100}-1,1994^{100},1994^{100}+1\) là 3 số tự nhiên liên tiếp nên phải có 1 số chia hết cho 3 mà \(1994^{100}\)có tổng các chữ số là \(1+9+9+4=123\)không chia hết 3 nên \(1994^{100}\)không chia hết cho 3 nên trong 2 số còn lại ít nhất có một số chia hết cho 3 ,số đó không thể là số nguyên tố 

Vậy \(1994^{100}-1\)và \(1994^{100}+1\)không thể đồng thời là số nguyên tố

Bài 2

Do P là số nguyên tố lớn hơn 3 nên 4p không chia hết cho 3 ,tương tự \(4p+2=2\left(2p+4\right)\)cũng không chia hết cho 3

Mà \(4p,4p+1,4p+2\)là 3 số tự nhiên liên tiếp nên ít nhất phải có 1 số chia hêt cho 3 .Do đó \(4p+1⋮3\)mà \(4p+1>13\)nên \(4p+1\)là hợp số 

Chúc bạn học tốt ( -_- )

15 tháng 2 2021

cách ra là chia hết nhé

Ta có: p4 – q4 = (p4 – 1 ) – (q4 – 1) ; 240 = 8 .2.3.5

Chứng minh p4 – 1   240

- Do p >5 nên p là số lẻ                                                                              

+ Mặt khác: p4 –1  = (p –1) (p + 1) (p2 +1)                                                 

--> (p-1 và (p+1) là hai số chẵn liên tiếp  => (p – 1) (p+1)  8                   

+ Do p là số lẻ nên p2  là số lẻ ->  p2 +1  2                                                 

- p > 5 nên p có dạng:

   + p = 3k +1 --> p – 1 = 3k + 1 – 1  = 3k   3  --> p4 – 1  3 

   + p = 3k + 2 -->  p + 1  = 3k + 2 + 1  = 3k +3  3  -->  p4 – 1  3             

- Mặt khác, p có thể là dạng:

+ P =  5k +1 --> p – 1  = 5k + 1 – 1  = 5k    5   --> p4 – 1    5

+ p = 5 k+ 2 --> p2 + 1 = (5k +2)2  +1  = 25k2  + 20k +5  5 --> p4 – 1  5  

+ p = 5k +3 --> p2 +1 = 25k2 + 30k +10 --> p4 –1  5

+ p = 5k +4 --> p + 1 = 5k +5  5 --> p4 – 1  5                                            

Vậy p4 – 1  8 . 2. 3 . 5 hay p4 – 1  240

Tương tự ta cũng có q4 – 1  240                                                                   

Vậy: (p4 – 1) – (q4 –1)  = p4 – q4    240

15 tháng 2 2021

Link : Câu hỏi của Sáng Đường - Toán lớp 6 - Học trực tuyến OLM

Chúc hok tốt !!!