Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯC ( n + 1 ; 2n + 1 )
=> n + 1 ⋮ d => 2.( n + 1 ) ⋮ d => 2n + 2 ⋮ d
=> 2n + 1 ⋮ d => 1.( 2n + 1 ) ⋮ d => 2n + 1 ⋮ d
=> [ ( 2n + 2 ) - ( 2n + 1 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯC ( n + 1 ; 2n + 1 ) = 1 nên \(\frac{n+1}{2n+1}\) là p/s tối giản ( đpcm )
Gọi d là ước chung của n + 1 và 2n + 1.
Ta có :
n+1 chia hết cho d => 2n+2 chia hết cho d
2n+1 chia hết cho d
=> ( 2n + 2 ) - ( 2n + 1 ) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> \(\frac{n+1}{2n+1}\)là phân số tối giản
Vậy \(\frac{n+1}{2n+1}\)là phân số tối giản.
A = 18n - n + 111....1
Số 111...1 có tổng các chữ số là 1+ 1+ 1+ ...+ 1 = n (có n chữ số 1)
=> 111...1 - n chia hết cho 9 ( Một số bất kì và tổng các chữ số của nó có cùng số dư khi chia cho 9)
Mà 18n luôn chia hết cho 9
=>A = 18n + 11...1 - n chia hết cho 9
17n+11...1= 17n+100..0(n chữ số 0) +100...0(n-1 chữ số 0)+...+1
Ta có công thức \(\frac{1}{k\left(k+1\right)}=\frac{1}{k}-\frac{1}{k+1}\)(bạn tự lên mạng coi cách chứng minh nha)
Áp dụng vào bài suy ra \(\frac{1}{1.2}=1-\frac{1}{2};\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};...;\frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)
Cộng theo vế ta được \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}< 1\)(đpcm)
để A=5/n-1 là phân số thì n#1
để A=5/n-1 là số nguyên thì 5 chia hết cho n-1
suy ra n-1 thuộc Ư(5)={1;-1;5;-5}
lập bảng ta có n={2;0;6;-4}
ta có ước của hai số nguyên liên tiếp bằng 1
suy ra Ư(n: n-1)=1 vậy n/n-1 là phân số tối giản
ta có 1/1x2+1/2x3+1/3x4+....+1/49/50
=1/1-1/2+1/2-1/3+1/4-1/5 +......+1/49-1/50
=1-1/50
=49/50<1
vậy 1/1x2+1/2x3+1/3x4+.....+1/49x50<1
1/n -1/n+1
(n+1).1 -1.n/n(n+1)
n+1 -n/n(n+1)
1/n(n +1) suy ra điều phải chứng minh
K MÌNH NHA CÁC BẠN
Ta có: \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{\left(n+1\right)-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\) (đpcm)