Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{105}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+105}\)
\(=\frac{abc}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\left(abc=105\right)\)
\(=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{a\left(bc+b+1\right)}\)
\(=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}\)
\(=\frac{bc+b+1}{bc+b+1}\)
\(=1\)
\(S=\frac{105}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+105}\)
\(=\frac{abc}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\) \(\left(abc=105\right)\)
\(=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{a\left(bc+b+1\right)}\)
\(=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}\)
\(=\frac{bc+b+1}{bc+b+1}\)
\(=1\)
Do \(abc=2018,bc+b+1\ne0\) nên thay vào biểu thức A ta có :
\(A=\frac{2018}{abc+bc+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+2018}\)
\(=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\)
\(=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{a}{a\left(bc+b+1\right)}\)
\(=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}\)
\(=\frac{bc+b+1}{bc+b+1}=1\)
Vậy : \(A=1\) với a,b,c thỏa mãn đề.
\(A=\frac{2018}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+2018}\)
\(=\frac{abc}{abc+ab+a}+\frac{ab}{abc+ab+a}+\frac{a}{ab+a+abc}\)
\(=1\)
Vậy ...
Đề đúng : Cho a,b,c thỏa mãn abc = 1. CMR : \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}=1\)
Giải như sau : ta có ;
\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+c+1}=\frac{c}{abc+ac+c}+\frac{ac}{abc^2+abc+ac}+\frac{1}{ac+c+1}\)
\(=\frac{c}{c+ac+1}+\frac{ac}{c+ac+1}+\frac{1}{c+ac+1}=\frac{c+ac+1}{c+ac+1}=1\)
vì abc=105 nên thay 105 bằng abc ta được:
\(s=\frac{abc}{a\left(bc+b+1\right)}\)+\(\frac{b}{bc+b+1}\)+\(\frac{a}{ab+a+abc}\)
\(s=\frac{bc}{bc+b+1}\)+\(\frac{b}{bc+b+1}\)+\(\frac{1}{b+1+bc}\)=\(\frac{bc+b+1}{bc+b+1}\)=1
Cho mình 1 l i k e nha..............
Với x, y là các số thực dương bất kì, theo BĐT Cô-si. Ta có:
\(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge2\sqrt{xy}.2\sqrt{\frac{1}{xy}}=4\)
\(\Rightarrow\frac{1}{x+y}\le4\left(\frac{1}{x}+\frac{1}{y}\right)\)
Áp dụng BĐT trên ta có:
\(\frac{ab}{c+1}=\frac{ab}{\left(c+a\right)\left(c+b\right)}\le\frac{ab}{4}\left(\frac{1}{c+a}+\frac{1}{c+b}\right)\)
Tương tự \(\frac{bc}{a+1}\le\frac{bc}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)
Cộng theo vế ba bất đẳng thức trên ta được:
\(VT\left(1\right)\le\frac{1}{4}\left(\frac{ab+ca}{b+c}+\frac{ab+cb}{c+a}+\frac{cb+ca}{a+b}\right)=\frac{a+b+c}{4}=\frac{1}{4}\)(đpcm)
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)
P/s: Bạn nói đúng, lớp 6 giải được rồi! Như mình nè , có điều không chắc thôi! =)))
Ta có : \(S=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ac}=\frac{c}{c+ac+abc}+\frac{ac}{ac+abc+abc^2}+\frac{1}{1+c+ac}\)
\(=\frac{c}{1+c+ac}+\frac{ac}{1+c+ac}+\frac{1}{1+c+ac}=\frac{1+c+ac}{1+c+ac}=1\)