K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2020

1) Ta có \(\frac{n}{n-4}=\frac{n-4+4}{n-4}=1-\frac{4}{n-4}\)

Vì \(1\inℤ\Rightarrow\frac{n}{n-4}\inℤ\Leftrightarrow\frac{-4}{n-4}\inℤ\Rightarrow-4⋮n-4\Rightarrow n-4\inƯ\left(-4\right)\)

=> \(n-4\in\left\{1;4-1;-4\right\}\)

=> \(n\in\left\{5;8;3;0\right\}\)

2) Gọi ƯCLN(n ; n + 1) = d

=> \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}\Rightarrow n+1-n⋮d\Rightarrow1⋮d\Rightarrow d=1}\)

=> n ; n + 1 là 2 số nguyên tố cùng nhau

=> \(\frac{n}{n+1}\)là phân số tối giản 

3) ĐK \(x\ne-2\)

Ta có : \(\frac{2n-3}{n+2}=\frac{2n+4-7}{n+2}=\frac{2\left(n+2\right)-7}{n+2}=2-\frac{7}{n+2}\)

\(\frac{2n-3}{n+2}\)đạt giá trị nhỏ nhất khi \(\frac{7}{n+2}\)lớn nhất

=> n + 2 lớn nhất 

mà n thuộc Z

=> n + 2 = 7

=> n = 5

=>  GTNN của \(\frac{2n-3}{n+2}\text{ là }1\Leftrightarrow x=5\)

\(\frac{2n-3}{n+2}\)đạt giá trị lớn nhất khi \(\frac{7}{x+2}\)nhỏ nhất

=> x + 2 nhỏ nhất

mà x thuộc z

=> x + 2 = -1

=> x = - 3

=> GTLN của \(\frac{2n-3}{n+2}\text{ là }9\Leftrightarrow x=-3\)

28 tháng 3 2019

câu 1a hình như sai bạn ạ

mình thử lấy n=5 thì n+1/n-3 bằng 6/2 (ko tối giản)

20 tháng 7 2020

Gọi d là ước chung của 2n+5 và 2n+3

=> 2n+5 chia hết cho d và 2n+3 chia hết cho d

=> (2n+5)-(2n+3)=2 chia hết cho d => d={1;2}

Do 2n+5 và 2n+3 lẻ => d lẻ => d=1

=> phân số trên tối giản với mọi n

21 tháng 7 2020

Cảm ơn bạn NGUYỄN NGỌC ANH MINH nhiều

28 tháng 3 2020

Gọi (2n+1,2n+3) là d. ĐK  : \(d\inℕ^∗\)

Ta có : (2n+1,2n+3)=d

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)

\(\Rightarrow\)(2n+3)-(2n+1)\(⋮\)d

\(\Rightarrow\)2\(⋮\)d

\(\Rightarrow d\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Mà 2n+1 là số nguyên lẻ nên \(d=\pm1\)

\(\Rightarrow\left(2n+1,2n+3\right)=\pm1\)

\(\Rightarrow\)2n+1 và 2n+3 là 2 số nguyên tố cùng nhau

\(\Rightarrow\)Phân số \(A=\frac{2n+1}{2n+3}\)tối giản với mọi số tự nhiên n  (đpcm)

1 tháng 4 2018

Đặt d là ƯCLN (2n+7,n+3)

    =>2n+7 chia hết cho d

          n+3 chia hết cho d nên 2n+6 chia hết cho d (2n+6=2*(n+3))

=>2n+7-(2n+6) chia hết cho d

                    1 chia hết cho d

Nên d=1

Suy ra 2n+7 và n+3 nguyên tố cùng nhau

Vậy 2n+7/n+3 là PS tối giản

                   

15 tháng 3 2019

để 10n/5n-3 là số nguyên(n thuộc Z) suy ra 10n chia hết cho 5n-3

suy ra 5n-3 chia hết cho 5n-3 suy ra 2(5n-3) hay10n-6 chia hết cho 5n-3

suy ra 10n-(10n-6) chia hết cho 5n-3

 suy ra 6 chia hết cho 5n-3

suy ra 5n-3 thuộc ư(6)={2;-3}

           5n thuộc {5;0}

           n thuộc {1;0}     

           

15 tháng 3 2019

Ta có 1/101+1/102+...+1/200>1/200+1/200+...+1/200(có 100 phân số 1/200)=1/2

suy ra

  1/2<D

Ta có 1/101+1/102+...+1/200<1/100+1/100+...+1/100(100 phân số 1/100)=1

Vậy 1/2<D<1(thỏa mãn điều kiện chứng minh)

6 tháng 5 2018

Sai đề. Tìm x mà lại cho n? Mình sửa lại là tìm n nhé

Để \(\frac{n-8}{n+3}\)là một số nguyên, \(n-8\)phải chia hết cho \(n+3\)

\(\Rightarrow n-8⋮n+3\)

\(\Rightarrow n-8-n+3⋮n+3\)

\(\Rightarrow11⋮n+3\Rightarrow n+3\inƯ\left(11\right)\)

\(Ư\left(11\right)=\left\{\pm1;\pm11\right\}\)

\(+n+3=1\Rightarrow n=1-3=-2\)

\(+n+3=-1\Rightarrow n=\left(-1\right)-3=-4\)

\(+n+3=11\Rightarrow n=11-3=8\)

\(+n+3=-11\Rightarrow n=-11-3=-14\)

\(\Rightarrow n\in\left\{-2;-4;8;-14\right\}\)

6 tháng 5 2018

\(Để\frac{n-8}{n+3}\in Z\)

\(\Rightarrow n-8⋮n+3\)

\(\Rightarrow n+3-11⋮n+3\)

Do \(n+3⋮n+3\Rightarrow11⋮n+3\)

\(\Rightarrow n+3\in\left(1;-1;11;-11\right)\)

\(\Rightarrow n\in\left(-2;-4;8;-14\right)\)

DD
4 tháng 3 2022

a) Đặt \(d=\left(n+3,n+4\right)\)

Suy ra \(\hept{\begin{cases}n+3⋮d\\n+4⋮d\end{cases}}\Rightarrow\left(n+4\right)-\left(n+3\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

b) Đặt \(d=\left(2n+5,4n+11\right)\)

Suy ra \(\hept{\begin{cases}2n+5⋮d\\4n+11⋮d\end{cases}}\Rightarrow\left(4n+11\right)-2\left(n+5\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

c) Đặt \(d=\left(3n+4,4n+5\right)\)

Suy ra \(\hept{\begin{cases}3n+4⋮d\\4n+5⋮d\end{cases}}\Rightarrow4\left(3n+4\right)-3\left(4n+5\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

28 tháng 3 2020

Gọi d là ƯCLN (2n+1; 2n+3) \(\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)

=> (2n+3)-(2n+1) \(⋮\)d

=> 2 \(⋮\)d

Mà d\(\inℕ^∗\)=> d={1;2}

Mà 2n+1 không chia hết cho 2

=> d=1

=> ƯCLN (2n+1;2n+3)=1

=> đpcm

28 tháng 3 2020

Cảm ơn bạn

23 tháng 4 2020

B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)

=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)

Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)

<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}

Lập bảng:

 2n + 3 1 -1 17 -17
  n -1 -2 7 -10

Vậy ....

23 tháng 4 2020

Bài 2:

Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)

\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)

=> 42n-7-42n+6 chia hết cho d

=> -1 chia hết cho d

mà d thuộc N* => d=1

=> ƯCLN (7n-1; 6n-1)=1

=> đpcm