K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2017

ns chung kết quả là 328350

định giải rồi nhưng trên ni ko có chức năng đóbanh

3 tháng 1 2017

moij người cho mik cách làm cái có được ko

\(\text{Bài 4:}\)

\(a.\left|x-\frac{3}{5}\right|< \frac{1}{3}\Rightarrow\orbr{\begin{cases}x-\frac{3}{5}< \frac{1}{3}\\x-\frac{3}{5}>-\frac{1}{3}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< \frac{14}{15}\\x>\frac{4}{15}\end{cases}\Rightarrow\frac{4}{15}< x< \frac{14}{15}}\)

\(b.\left|-5,5\right|=5,5\)

\(\Rightarrow\left|x+\frac{11}{2}\right|>5,5\Rightarrow\orbr{\begin{cases}x+\frac{11}{2}>5,5\\x+\frac{11}{2}< -5,5\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>0\\x< -11\end{cases}}\)

13 tháng 4 2019

(2x+3)\(^2\) = \(\frac{25}{9}\)

=> 2x+3 = \(\frac{5}{3}\)

=> 2x = \(\frac{5}{3}\) - 3

=> 2x = \(-\frac{4}{3}\)

=> x =\(-\frac{2}{3}\)

13 tháng 4 2019

TH2: (2x+3)\(^2\) =\(\frac{29}{5}\)

=> 2x+3 = \(-\frac{5}{3}\)

=> 2x = \(-\frac{5}{3}\) - 3

=> 2x = \(-\frac{14}{3}\)

=> x = \(-\frac{7}{3}\)

12 tháng 4 2019

1. Ta có \(|3x-1|=\frac{1}{2}\)

\(\Rightarrow\)\(\orbr{\begin{cases}3x-1=\frac{1}{2}\\3x-1=-\frac{1}{2}\end{cases}}\)

\(\Rightarrow\)\(\orbr{\begin{cases}x=(\frac{1}{2}+1):3\\x=(-\frac{1}{2}+1):3\end{cases}}\)

\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{6}\end{cases}}\)

Sau đó tự thay x vào đa thức theo 2 trường hợp trên nha

Sai thì thôi nha bn mik cx chưa lm dạng này bh

13 tháng 4 2019

Câu 1:

\(A\left(x\right)=6x^4-4x^2-3+9x+5x^2-7x-2x^4+4-2x-4x^4\)

\(=\left(6x^4-2x^4-4x^4\right)+\left(-4x^2+5x^2\right)+\left(-7x-2x\right)+9x+\left(-3+4\right)\)

\(=x^2+9x+1\)

Ta có: \(\left|3x-1\right|=\frac{1}{2}\)

TH1: \(3x-1=\frac{1}{2}\Rightarrow3x=\frac{1}{2}+1=\frac{3}{2}\Rightarrow x=\frac{3}{2}:3=\frac{1}{2}\)

\(A\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+9\cdot\frac{1}{2}+1=\frac{1}{4}+\frac{9}{2}+1=\frac{23}{4}\)

TH2: \(3x-1=\frac{-1}{2}\Rightarrow3x=\frac{-1}{2}+1=\frac{1}{2}\Rightarrow x=\frac{1}{2}:3=\frac{1}{6}\)

\(A\left(\frac{1}{6}\right)=\left(\frac{1}{6}\right)^2+9\cdot\frac{1}{6}+1=\frac{91}{36}\)

3 tháng 8 2017

Ta có : \(A=\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+.....+\frac{1}{2^{99}}\)

\(\Rightarrow2^2A=2+\frac{1}{2}+\frac{1}{2^3}+.....+\frac{1}{2^{97}}\)

\(\Rightarrow4A-A=2-\frac{1}{2^{99}}\)

\(\Rightarrow3A=2-\frac{1}{2^{99}}\)

\(\Rightarrow A=\frac{2-\frac{1}{2^{99}}}{3}\)

27 tháng 10 2019

cho mk rồi mk mới làm

27 tháng 10 2019

cho mk rồi mk làm

27 tháng 6 2018

\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

\(2A+A=2^{101}-2\)

\(A=\frac{2^{101}-2}{3}\)

\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(3B-B=1-\frac{1}{3^{99}}\)

\(B=\frac{1-\frac{1}{3^{99}}}{2}\)

27 tháng 6 2018

\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

\(2A+A=\left(2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-^2\right)+\left(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\right)\)

\(3A=2^{101}-2\)

\(A=\frac{2^{101}-2}{3}\)

Chúc bạn học tốt ~