K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có 

E là trung điểm của AB

F là trung điểm của AC

Do đó: EF là đường trung bình

=>EF//BC và EF=BC/2(1)

hay EFCB là hình thang

b: Xét ΔGBC có

K là trung điểm của GB

H là trung điểm của GC

Do đó: KH là đường trung bình

=>KH//BC và KH=BC/2(2)

Từ (1) và (2) suy ra EF=HK và EF=HK

hay EFKH là hình bình hành

M A N B D C E F

a, bn dựa vào hình nha

b,bn kham khảo trên h

c,  Vì EFKH là hinhg bình hành nên để EFKH là hình chữ nhật thì EH⊥EF


Nối AG.

Ta lại có: EH//AG (EH là đường TB)

Và EH⊥EF EF⊥AG AG⊥BC (EF//BC)

mà ta đã có AG là đường trung tuyến của ΔABC

ΔABC cân tại A

Vâỵ để EFKH là hình chữ nhật thì tam giác ABC phải cân tại A.

Kéo dài AG cắt BC tại I

Khi đó SEFKH=EH.EF=12AG.12BC=14.23AI.BC=16AI.BC

Và SABC=BC.AI (vì ta đã CM được AI là đường cao)

SEFKHSABC=16AI.BCBC.AI=16

Vậy SEFKH=16SABC

Những gì mình làm chỉ có vậy thôi chúc bn hc tốt

12 tháng 6 2019

A B C E F K H G

a) E là trung điểm AB, F là trung điểm AC

=> EF là đường trung bình của tam giác ABC 

=> EF//BC

=> EFCB là hình bình hành

b) H là trung điểm BG, K là trung điểm CG

=> HK là đường trung bình của tam giác GBC

=> HK//=\(\frac{1}{2}\)BC

mà  EF//=\(\frac{1}{2}\) BC ( vì  EF là đường trung bình của tam giác ABC )

=> HK//=EF

=> HKEF là hình bình hành

c) Để EFHK là hình chữ nhật

ĐK là HE vuông EF (1)

Vì H là trung điểm BG

E là trung điểm AB

=> HE là đường trung bình BAG

=> EH//AG  (2)

mà EF//BC (3)

1, 2, 3 => AG vuông BC (4) 

Mặt khác G là giao  điểm 2 đường trung tuyến  CE, BFcủa tam giác ABC

=> G là trọng tâm

=> AG là đường trung tuyến  (5)

4, 5 => Tam giác ABC cân tại A

Vậy để EFKH là hình chữ nhật thì tam giác ABC cân tại A

Gọi M là giao điểm của BC

=> Diện tích tam giác ABC :=\(\frac{1}{2}\)AM. BC

Diện tích EFKH := EF.EH=\(\frac{1}{2}\)BC.\(\frac{1}{2}\)AG=\(\frac{1}{2}\)BC. \(\frac{1}{2}\).\(\frac{2}{3}\) AM=\(\frac{1}{6}\)AM.BC =\(\frac{1}{3}\)diện tíc ABC

=> Tự so sánh nhé!

Bài 1: Cho hbh ABCD. Trên các cạnh AB, CD lần lượt lấy các điểm M, N sao cho AM=DN. Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E, F. Chứng minh rằng:a) E và F đối xứng qua ABb) MEBF là hình thoic) Hbh ABCD phải có thêm điều kiện gì để BCNE là hình thang cân?Bài 2: Cho tam giác ABC cân tại A. Đường cao AH và E, M thứ tự là trung điểm AB và AC.a) chứng minh AH là trục đối xứng...
Đọc tiếp

Bài 1: Cho hbh ABCD. Trên các cạnh AB, CD lần lượt lấy các điểm M, N sao cho AM=DN. Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E, F. Chứng minh rằng:

a) E và F đối xứng qua AB

b) MEBF là hình thoi

c) Hbh ABCD phải có thêm điều kiện gì để BCNE là hình thang cân?

Bài 2: Cho tam giác ABC cân tại A. Đường cao AH và E, M thứ tự là trung điểm AB và AC.

a) chứng minh AH là trục đối xứng của tam giác ABC?

b) các tứ giác EMCB, BEMH, AEHM là hình gì? vì sao?

c) tìm điều kiện tam giác ABC để AEHM là hình vuông?

Trong trường hợp này tính diện tích tam giác BHE. Biết AB=4cm

Bài 3: Gọi E, F lần lượt là trung điểm AB, AC của tam giác ABC.

a) Tứ giác EFCB là hình gì? vì sao?

b) CE và BF cắt nhau tại G. Gọi K, H thứ tự là trung điểm của GC và GB. Chứng minh EFKH là hình bình hành.

c) Tìm điều kiện của tam giác ABC để EFKH là hình chữ nhật.

Khi đó so sánh diện tích EFKH với diện tích tam giác ABC

Vẽ hình và giải giúp mình nha. (bài nào làm được thì làm ạ)

Mình đang cần gấp.

Mơn nhìu~~

 

1
9 tháng 6 2019

1A)  Gọi I là giao điểm của EF và AB                                                                                                                                                                   Vì EF là đường trung trực của MB nên BE=BF                                                                                                                                             xét hai tam giác BEI và BFI thì chúng bằng nhau ( t. hợp ch-cgv)                                                                                                                 IE=IF; EF vuông góc AB  =) E và F đối xứng nhau qua AB nên ta chứng minh  được hai tam giác BEI và BF1 bằng nhau.                   1b) gọi I là giao điểm của MB và EF
ta có EI là đường trung bình của tam giác MEB 
nên tam giác MEB cân tại E => góc EMB = góc EBM
có EI là đường cao đồng thời là đường phân giác
nên góc MEI = góc BEI
ta có MN//BC//AD
hay ME//BF
nên góc MFI = góc IFB; góc EMB = góc FBM ( 2 góc slt)
mà góc MEI = góc BEI 
nên góc IFB = góc BEI
=> tam giác BEF cân tại B
lại có BI là tia phân giác (góc EBI = góc FBI=góc EMI)
hay BI là đường trung tuyến
ta có EF vuông góc với MB 
I là trung điểm của MB và EF
nên tứ giác MEBF là hình thoi                                                                                                                                                                   1c)*Vì EB // NC nên EBCN là hình thang có 2 đáy là EB và NC
để EBCN là hình thang cân thì EN = BC

22 tháng 8 2019

A B C E D H K G

a) Ta có:

DE là đường trung bình của tam giác ABC =>DE//= \(\frac{1}{2}\)BC

HK là đường trung bình của tam giác GBC => HK //=\(\frac{1}{2}\)BC (1)

=> DE//=HK => DEHK là hình bình hành

b) DEHK là hình chữ nhật 

điều kiện là: HE vuông góc HK 

mà HE là đường trung bình tam giác ABG => HE//=\(\frac{1}{2}\)AG  

lại có:  HK //=\(\frac{1}{2}\)BC ( theo (1))

=> AG vuông góc BC => AG là đường cao của tam giác ABC (2)

mà hai đường trung tuyến BD và CE cắt nhau tại G => G là trọng tâm tam giác ABC => AG là đường trung tuyến ABC (3)

Từ (2), (3) => tam giác ABC cân

c) Khi BD vuông góc với CE 

=> hình chữ nhật EDKH có EK vuông HD

=> EDKH là hình vuông.

29 tháng 4 2018

Kết quả hình ảnh cho ho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi H là trung điểm của GB, K là trung điểm của GCa) Chứng minh rằng tứ giác DEHK là hình bình hànhb) Tam giác ABC có điều kiện gì thì tứ giác DEHK là hình chữ nhậtc) Nếu các đường trung tuyến BD và CE vuông góc với nhau thì tứ giác DEHK là hình gì ?

a)

BD là đường trung tuyến của Δ ABC nên D là trung điểm của AC (1)

CE là đường trung tuyến của Δ ABC nên E là trung điểm của AB (2)

Từ (1) và (2) suy ra :

DE là đường trung bình của Δ ABC

=> DE // BC và DE = 1/2 BC

Δ BGC có H là trung điểm của GB và K là trung điểm của GC

suy ra HK là đường trung bình của Δ BGC

=> HK // BC và HK = 1/2 BC

Tứ giác DEHK có DE//BC, HK // BC và DE = HK = 1/2 BC

nên tứ giác

b) DEHK là hình bình hành nên

HG = GD = 1/2 HD và GE = GK = 1/2 EK

Để tứ giác DEHK là hình chữ nhật thì

HD = EK => 1/2 HD = 1/2 EK => GE = GD và GH = GK

GH = GK => 2GH = 2GK => GB = GC

Xét Δ GEB và Δ GDC có

GE = GD Góc EGB = góc DGC GB = GC => ΔGEB = ΔGDC (c.g.c) => BE = CD => 2BE = 2CD => AB = AC => ΔABC cân tại A Vậy để

tứ giác DEHK là hình chữ nhật thì

ΔABC cân tại A

c) BD ⊥ CE => HD ⊥ EK Hình bình hành DEHK có HD ⊥ EK nên DEHK là hình thoi Vậy

nếu các đường trung tuyến BD và CE vuông góc với nhau thì tứ giác DEHK là hình thoi

Sửa đề: Đường trung tuyến BD

a) Ta có: BD và CE lần lượt là các đường trung tuyến ứng với các cạnh AC,AB trong ΔABC(gt)

nên E là trung điểm của AB và D là trung điểm của AC

Xét ΔABC có 

E là trung điểm của AB(cmt)

D là trung điểm của AC(cmt)

Do đó: ED là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔGBC có 

H là trung điểm của GB(gt)

K là trung điểm của GC(gt)

Do đó: HK là đường trung bình của ΔGBC(Định nghĩa đường trung bình của tam giác)

Suy ra: HK//BC và \(HK=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra ED//HK và ED=HKXét tứ giác EDKH có 

ED//HK(cmt)

ED=HK(cmt)

Do đó: EDKH là hình bình hành(Dấu hiệu nhận biết hình bình hành)

22 tháng 2 2021

Sửa đề: Đường trung tuyến BD

a) Ta có: BD và CE lần lượt là các đường trung tuyến ứng với các cạnh AC,AB trong ΔABC(gt)

nên E là trung điểm của AB và D là trung điểm của AC

Xét ΔABC có 

E là trung điểm của AB(cmt)

D là trung điểm của AC(cmt)

Do đó: ED là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: ED//BC và ED=BC2ED=BC2(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔGBC có 

H là trung điểm của GB(gt)

K là trung điểm của GC(gt)

Do đó: HK là đường trung bình của ΔGBC(Định nghĩa đường trung bình của tam giác)

Suy ra: HK//BC và HK=BC2HK=BC2(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra ED//HK và ED=HKXét tứ giác EDKH có 

ED//HK(cmt)

ED=HK(cmt)

Do đó: EDKH là hình bình hành(Dấu hiệu nhận biết hình bình hành)

9 tháng 12 2015

bn cm là hbh đc chưa để mk biết duog mà giải