K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2021

(2x+3y)2=2x2+12xy+3y2

(5x-y)2=25x2-10xy+y2

(x+1/4)2=x2+1/2x+1/16

(1/3x-1/2y)2=1/9x2-1/3xy+1/4y2

(3x+1)(3x-1)=3x2-1

(x2+2/5y)(x2-2/5y)=x4-4/25y2

17 tháng 12 2023

a: \(M=2\left(x+5\right)^2+5\left(x-2\right)^2-7\left(x+3\right)\left(x-3\right)\)

\(=2\left(x^2+10x+25\right)+5\left(x^2-4x+4\right)-7\left(x^2-9\right)\)

\(=2x^2+20x+50+5x^2-20x+20-7x^2+63\)

\(=113\)

b: \(H=\left(2x-3y\right)^2-\left(3y-2\right)\left(3y+2\right)-\left(1-2x\right)^2+4x\left(3y-1\right)\)

\(=4x^2-12xy+9y^2+12xy-4x-\left(9y^2-4\right)-\left(4x^2-4x+1\right)\)

\(=4x^2+9y^2-4x-9y^2+4-4x^2+4x-1\)

=3

c: \(N=\left(2x+3y\right)^2+\left(3x-2y\right)^2-13\left(x+y\right)\left(x-y\right)-26\left(y+1\right)\left(y-1\right)\)

\(=4x^2+12xy+9y^2+9x^2-12xy+4y^2-13\left(x^2-y^2\right)-26\left(y^2-1\right)\)

\(=13x^2+13y^2-13x^2+13y^2-26y^2+26\)

=26

d: \(K=\left(x^2y-3\right)^2-\left(2x-y\right)^3+xy^2\left(6-x^3\right)+8x^3-6x^2y-y^3\)

\(=x^4y^2-6x^2y+9+6xy^2-x^4y^2+8x^3-6x^2y-y^3-\left(2x-y\right)^3\)

\(=-12x^2y+9-y^3+6xy^2+8x^3-\left(8x^3-12x^2y+6xy^2-y^3\right)\)

\(=\left(8x^3-12x^2y+6xy^2-y^3\right)-\left(8x^3-12x^2y+6xy^2-y^3\right)+9\)

=9

e: \(P=\left(4x+3\right)\left(16x^2-12x+9\right)-\left(-23+64x^3\right)\)

\(=\left(4x\right)^3+3^3+23-64x^3\)

\(=64x^3+27+23-64x^3\)

=50

h: \(Q=\left(x+5y\right)\left(x^2-5xy+25y^2\right)+\left(x-5y\right)\left(x^2+5xy+25y^2\right)-\dfrac{1}{2}\left(4x^3-7\right)\)

\(=x^3+125y^3+x^3-125y^3-2x^3+\dfrac{7}{2}\)

=7/2

19 tháng 12 2023

cảm on ạa

7 tháng 2 2017

tôi kết bạn

13 tháng 10 2021

tui nek

16 tháng 9 2020

                                                           Bài giải

A B C D E

AD = AE

=> Tam giác ADE cân tại A

=>\(\widehat{ADE}\) = 90o - \(\frac{\widehat{DAE}}{2}\)

\(\widehat{ABC}\) = 90o - \(\frac{\widehat{BAC}}{2}\) (tam giác ABC cân tại A) 

=> \(\widehat{ADE}=\widehat{ABC}\)

mà 2 góc này ở vị trí so le trong

=> DE // BC

=> BDEC là hình thang

\(\widehat{ABC}\) = \(\widehat{ACB}\)(tam giác ABC cân tại A)

=> BDEC là hình thang cân

BD = DE

=> Tam giác DBE cân tại D

=> \(\widehat{DBE}=\widehat{DEB}\) 

\(\widehat{DEB}=\widehat{EBC}\) (DE // BC, 2 góc so le trong)

=>\(\widehat{DBE}=\widehat{EBC}\)

=> BE là tia phân giác của \(\widehat{DBC}\)

DE = EC

=> Tam giác \(\widehat{ECD}\) cân tại E

=> \(\widehat{ECD}=\widehat{EDC}\)

\(\widehat{EDC}=\widehat{DCB}\)(DE // BC, 2 góc so le trong)

=> \(\widehat{ECD}=\widehat{DCB}\)

=> CD là tia phân giác của\(\widehat{ECB}\)

Vậy BD = DE = EC <=> D và E lần lượt thuộc tia phân giác của\(\widehat{DBC}\)và \(\widehat{ECB}\)

9 tháng 7 2016

1./ Khẳng định 1: Với mọi p tự nhiên > 0, ta đều có: yp - 1 = (y - 1)*(yp-1 + yp-2 + yp-3 +... + y + 1)

Hay yp - 1 chia hết cho y - 1 với mọi y nguyên > 1.

2./ Nếu m = n = 0 thì hiển nhiên x3*0+1 + x3*0+2 + 1 = x2 + x + 1 chia hết cho:  x2 + x + 1

3./ Nếu m; n không đồng thời bằng 0 thì:

Viết \(A=x^{3m+1}+x^{3n+2}+1=x\cdot x^{3m}-x+x^2\cdot x^{3n}-x^2+x^2+x+1.\)

\(A=x\left(x^{3m}-1\right)+x^2\left(x^{3n}-1\right)+x^2+x+1\)

\(A=x\left(\left(x^3\right)^m-1\right)+x^2\left(\left(x^3\right)^n-1\right)+x^2+x+1\)

Áp dụng khẳng định 1 cho m, n tự nhiên > 0 ta có:

\(\left(x^3\right)^m-1\)và \(\left(x^3\right)^m-1\)chia hết cho x3 - 1. Mà x3 - 1 = (x - 1)(x2 + x + 1)

=> \(\left(x^3\right)^m-1\)và \(\left(x^3\right)^m-1\)chia hết cho x2 + x + 1

=> A chia hết cho x2 + x + 1 với mọi m,n là số tự nhiên. đpcm

Với m,n là các số tự nhiên ta có \(x^{3m+1}+x^{3n+1}+1=\left(x^{3m+1}-x\right)+\left(x^{3n+2}-x\right)+x^2+x+1\)
Ta thấy:

  1. \(x^{3m+1}-x=x\left(\left(x^3\right)^m-1\right)\) chia hết cho \(x^3-1\)và vì \(x^3-1\) chia hết cho x^2 + x + 1 nên x^(3m + 1) - x chia hết cho x^2 + x + 1. 

ii/ x^(3n + 2) - x^2 = x^2[(x^3)^n - 1] chia hết cho x^3 - 1, và vì x^3 - 1 chia hết cho x^2 + x + 1 nên x^(3n + 2) - x^2 chia hết cho x^2 + x + 1. 
Từ đó suy ra [x^(3m + 1) - x] + [x^(3n + 2) - x^2] + (x^2 + x + 1) chia hết cho x^2 + x + 1, hay x^(3m + 1) + x^(3n + 2) + 1 chia hết cho x^2 + x + 1. Đây là điều phải chứng minh.

17 tháng 9 2019

\(2020^2-2019^2+2018^2-2017^2+...+2^2-1^2\)

\(=\left(2020-2019\right)\left(2020+2019\right)+\left(2018-2017\right)\left(2018+2017\right)++\left(2-1\right)\left(2+1\right)\)

\(=2019+2018+2017+...+2+1\)

\(=\frac{\left(2019+1\right)2019}{2}\)

\(=2039190\)

18 tháng 2 2020

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

13 tháng 11 2016

Câu 1:

\(2x^3-3x^2+x+a\)

\(=2\left(x^3-6x^2+12x-8\right)+9\left(x^2-4x+4\right)+13\left(x-2\right)+\left(6+a\right)\)

\(=2\left(x-2\right)^3+9\left(x-2\right)^2+13\left(x-2\right)+\left(6+a\right)\)chia hết cho \(x-2\)khi và chỉ khi :

\(6+a=0\Leftrightarrow a=-6\). Vậy \(a=-6\).

Câu 2:

\(\left(x+1\right)\left(2x-x\right)-\left(3x+5\right)\left(x+2\right)=4x^2+1\)

\(\Leftrightarrow x^2+x-\left(3x^2+11x+10\right)=-4x^2+1\)

\(\Leftrightarrow x^2+x-3x^2-11x-10+4x^2-1=0\)

\(\Leftrightarrow2x^2-10x-11=0\)

\(\Delta'=\left(-5\right)^2-2\left(-11\right)=47>0\)

\(\Rightarrow\)Phương trình có 2 nghiệm phân biệt:

\(x=\frac{5+\sqrt{47}}{2}\)hoặc \(x=\frac{5-\sqrt{47}}{2}\)

Vậy phương trình có tập nghiệm \(S=\left\{\frac{5+\sqrt{47}}{2};\frac{5-\sqrt{47}}{2}\right\}\)

27 tháng 2 2020

\(M=\frac{a^6-1}{a^2-1}=\frac{\left(a^2\right)^3-1}{\left(a-1\right)\left(a+1\right)}=\frac{\left(a^2-1\right)\left[\left(a^2\right)^2+a^2\cdot1+1^1\right]}{\left(a-1\right)\left(a+1\right)}\)

\(M=\frac{\left(a-1\right)\left(a+1\right)\left(a^4+a^2+1\right)}{\left(a-1\right)\left(a+1\right)}=a^4+a^2+1\)

4 tháng 12 2018

ok bn

nhưng lần sau ko đăng linh tinh nx nha

#G2k6#

4 tháng 12 2018

ko đnagư câu hỏi linh tinh