Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ÁP dụng BĐT : \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\) ta có :
\(\left(\sqrt{4x+3}+\sqrt{4y+3}+\sqrt{4z+3}\right)^2\le3\left(4x+4y+4z+9\right)=3\left(4\left(x+y+z\right)+9\right)=3.13=39\)
=> \(\sqrt{4x+3}+\sqrt{4y+3}+\sqrt{4z+3}\le\sqrt{39}\)
Vậy MAx F = .... tại x = y = z = 1/3
ta có \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\Rightarrow x+y+z\le3\)
ta có :\(\sqrt{4x+5}=\frac{\sqrt{9\left(4x+5\right)}}{3}\le\frac{9+4x+5}{2\times3}=\frac{2x+7}{3}\)
tương tự ta sẽ có ; \(A\le\frac{2x+7}{3}+\frac{2y+7}{3}+\frac{2z+7}{3}=\frac{2}{3}\left(x+y+z\right)+7\le\frac{2}{3}\times3+7=9\)
Vậy GTLN của A=9
dấu bằng xảy ra khi x= y= z =1
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow2x^2+2y^2+2z^2\ge2\left(xy+yz+zx\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=3.3=9\)
\(\Rightarrow x+y+z\le3\).
\(A=\sqrt{4x+5}+\sqrt{4y+5}+\sqrt{4z+5}\)
\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(4x+5+4y+5+4z+5\right)}\)
\(=\sqrt{3\left[4\left(x+y+z\right)+15\right]}=9\)
Dấu \(=\)khi \(x=y=z=1\).
Bài 1 :
Ta có : \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}=\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\)
Theo BĐT Cô - Si dưới dạng engel ta có :
\(\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\ge\dfrac{\left(1+2\right)^2}{3a^2+6ab+3b^2}=\dfrac{9}{3\left(a+b\right)^2}=\dfrac{9}{3.1}=3\)
Dấu \("="\) xảy ra khi : \(a=b=\dfrac{1}{2}\)
\(A=\sum\sqrt{4x+2\sqrt{x}+1}\)
\(Max_A=+\infty\)
\("="x=y=z=+\infty\)
Áp dụng cauchy 3 số \(\sqrt[3]{x+3y}\)=1.1.\(\sqrt[3]{x+3y}\)\(\le\)\(\frac{1+1+x+3y}{3}\)
Tương tự ta có P\(\le\)\(\frac{2+2+2+\left(x+y+z\right)+3\left(x+y+z\right)}{3}\)=\(\frac{6+4\left(x+y+z\right)}{3}\)=\(\frac{6+3}{3}\)=3
Dấu = xảy ra khi : x=y=z=\(\frac{1}{4}\)
Điều kiện \(x,y,z\ge\frac{1}{4}\)
Cộng các phương trình trong hệ được :
\(2\left(x+y+z\right)=\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\)
\(\Leftrightarrow4\left(x+y+z\right)=2\sqrt{4x-1}+2\sqrt{4y-1}+2\sqrt{4z-1}\)
\(\Leftrightarrow\left(\sqrt{4x-1}-1\right)^2+\left(\sqrt{4y-1}-1\right)^2+\left(\sqrt{4z-1}-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{4x-1}-1=0\\\sqrt{4y-1}-1=0\\\sqrt{4z-1}-1=0\end{cases}}\) \(\Leftrightarrow x=y=z=\frac{1}{2}\)
Từ đó thay vào yêu cầu đề bài để tính.
bài này dễ nhưng bạn phải chứng minh bđt này đã:
\(\frac{1}{a+b+c+d}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\)
với a;b;c;d là các số dương
bạn có thể cm bđt trên bằng cách biến đổi tương đương hoặc cm bđt Schwat (Sơ-vác)
Mình là 1 phần tử đại diện còn lại là hoàn toàn tt nhé
ta có \(\frac{1}{3\sqrt{x}+3\sqrt{y}+2\sqrt{z}}=\frac{1}{2\left(\sqrt{x}+\sqrt{y}\right)+\left(\sqrt{y}+\sqrt{z}\right)+\left(\sqrt{x}+\sqrt{z}\right)}\)
\(\le\frac{1}{16}\left(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{x}+\sqrt{z}}\right)\)
Tương tự ta cm được
\(VT\le\frac{1}{16}.4\left(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{z}+\sqrt{x}}\right)\)\(=\frac{1}{4}.3=\frac{3}{4}\)
dấu "=" khi x=y=z