Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài a, nhứ đã giải ở câu trc:
b, ĐK: 0<x, x khác 1.
ta có: log2x64= 6.log2x2= 6( \(\frac{1}{1+log_2x}\))
logx216=2logx2=\(\frac{2}{log_2x}\)
Thay vào pt:
6( \(\frac{1}{1+log_2x}\)) +\(\frac{2}{log_2x}\) =3
đặt T=log2x, ĐK. t>0
<=>6\(\frac{1}{1+t}\) +\(\frac{2}{t}\)=3
.......
<=> t=2( nghiệm -\(\frac{1}{3}\)<0 loại)
.....
<=>x=4(thõa)
Lời giải:
a) ĐKXĐ:......
Ta có: \(\log_{2x+1}(3-x^2)=2\)
\(\Leftrightarrow 3-x^2=(2x+1)^2\)
\(\Leftrightarrow 5x^2+4x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2+\sqrt{14}}{5}\\x=\dfrac{-2-\sqrt{14}}{5}\end{matrix}\right.\)
Kết hợp với đkxđ suy ra \(x=\frac{-2+\sqrt{14}}{5}\) là nghiệm
b) ĐKXĐ:....
Đặt \(2-x=a\Rightarrow \log_2(2a+1)=a\) (\(a>\frac{-1}{2}\))
\(\Leftrightarrow 2a+1=2^a\)
Xét hàm \(y(a)=2^a-2a-1\)
\(\Rightarrow y'=\ln 2.2^a-2=0\Leftrightarrow a=\log_2\left(\frac{2}{\ln 2}\right)\)
Lập bảng biến thiên của $y(a)$ với $a>\frac{-1}{2}$ ta thấy đồ thì của $y(a)$ cắt đường thẳng \(y=0\) tại hai điểm, tức là pt có hai nghiệm. Trong đó một nghiệm thuộc \((-\frac{1}{2}; \log_2\left(\frac{2}{\ln 2}\right))\) và nghiệm khác thuộc \((\log_2\left(\frac{2}{\ln 2}\right);+\infty)\)
Thực hiện shift-solve ta thu được \(a=0\) hoặc \(a\approx 2,66\)
Câu c)
ĐKXĐ: \(x>-1\)
Ta có: \(\log_2(x+1)=4-3x\Leftrightarrow x+1=2^{4-3x}\)
Ta thấy:
\((x+1)'=1>0\) nên hàm vế trái đồng biến trên KXĐ
\((2^{4-3x})'=-3.\ln 2.2^{4-3x}<0\) nên hàm vế phải nghịch biến trên KXĐ
Do đó, PT chỉ có thể có duy nhất một nghiệm
Thấy \(x=1\) thỏa mãn nên $x=1$ là nghiệm duy nhất của phương trình
Điều kiện xác định : 3\(^x\)>2
Ta có: \(\log_2\left(4.3^x-6\right)=\log_2\left(2\sqrt{2}\right).\log_{2\sqrt{2}}\left(4.3^x-6\right)\)
\(\log_2\left(4.3^x-6\right)-\dfrac{3}{2}\log_{2\sqrt{2}}\left(9^x-6\right)=1\left(1\right)\)\(\Leftrightarrow\log_2\left(2\sqrt{2}\right)\log_{2\sqrt{2}}\left(4.3^x-6\right)-\dfrac{3}{2}\log_{2\sqrt{2}}\left(9^x-6\right)=1\)
\(\Rightarrow\dfrac{3}{2}\log_{2\sqrt{2}}\left(4.3^x-6\right)-\dfrac{3}{2}\log_{2\sqrt{2}}\left(9^x-6\right)=1\)\(\Leftrightarrow\dfrac{3}{2}[\log_{2\sqrt{2}}\left(4.3^x-6\right)-\log_{2\sqrt{2}}\left(9^X-6\right)]=1\)
\(\Leftrightarrow\log_{2\sqrt{2}}\left(\dfrac{4.3^X-6}{9^X-6}\right)=\dfrac{2}{3}\)\(\Leftrightarrow\log_{2\sqrt{2}}\left(\dfrac{4.3^X-6}{9^X-6}\right)=\log_{2\sqrt{2}}\left(2\right)\)
\(\Leftrightarrow\dfrac{4.3^X-6}{9^X-6}=2\Leftrightarrow4.3^X-6=2.9^X-12\)\(\Leftrightarrow2.(3^X)^2-4.3^X-6=0\Rightarrow\left[{}\begin{matrix}3^X=3\left(TM\right)\\3^X=-1\left(loai\right)\end{matrix}\right.\)
\(\Rightarrow x=1.\)Vậy x=1 là nghiệm của phương trình (1)