K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2020

\(\frac{100\left(x+20\right)}{x\left(x+20\right)}-\frac{100x}{x\left(x+20\right)}=\frac{1}{3}\)

\(\frac{100x+2000-100x}{x\left(x+20\right)}=\frac{1}{3}\)

\(\frac{2000}{x\left(x+20\right)}=\frac{1}{3}\)

\(\Rightarrow x^2+20x=3.2000\)

\(\Rightarrow x^2+20x-6000=0\)

31 tháng 3 2020

ĐKXĐ: \(x\ne0;x\ne-2\)

Ta có: \(\frac{100x+2000-100x}{x\left(x+20\right)}=\frac{1}{3}\)

\(\Leftrightarrow\frac{2000}{x^2+20x}=\frac{1}{3}\)

\(\Leftrightarrow x^2+20x=6000\)

\(\Leftrightarrow x^2+2.10x+100=6100\)

\(\Leftrightarrow\left(x+10\right)^2=6100\)

\(\Leftrightarrow\orbr{\begin{cases}x=10\sqrt{61}-10\left(TM\right)\\x=-10\sqrt{61}-10\left(TM\right)\end{cases}}\)

Vậy...

6 tháng 8 2016

\(S=\frac{-1+\sqrt{2}}{2-1}+\frac{-\sqrt{2}+\sqrt{3}}{3-2}+...+\frac{-\sqrt{99}+\sqrt{100}}{100-99}\)

\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-....-\sqrt{99}+\sqrt{100}\)

\(=-1+\sqrt{100}\)

\(\hept{\begin{cases}a=\left(x^2-x+1\right)^2\\b=x^2\end{cases}}\)

\(a^2-\left(b+1\right)a+b=0\Leftrightarrow\left(a-1\right)\left(a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=b\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x^2-x+1\right)^2=1\\\left(x^2-x+1\right)^2=x^2\end{cases}}\)(easy)

27 tháng 7 2019

\(hpt\Leftrightarrow\hept{\begin{cases}\frac{20}{x+2y}-\frac{5}{x-2y}=5\\\frac{20}{x+2y}+\frac{3}{x-2y}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{8}{x-2y}=-4\\\frac{20}{x+2y}+\frac{3}{x-2y}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x-2y}=-\frac{1}{2}\\\frac{1}{x+2y}=\frac{1}{8}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-2y=-2\\x+2y=8\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\y=\frac{5}{2}\end{cases}}\)

20 tháng 1 2020

câu hỏi hay nhưng ko hay bằng mình

             Dân ta phải biết sử ta 

        Cái gì hổng biết lên tra google

                 Chúc học tốt

29 tháng 11 2017

\(\Rightarrow\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}=\frac{1}{6}\)

ĐK:\(x\ne-2;-3;-4;-5\)

MTC:\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right).6\)

Quy đồng khử mẫu:

20 tháng 3 2020

Đúng là chơi lừa bịp thực sự bài này rất dễ đây là cách giải:

ta có: \(\left(x+y\right)^2+\left(y+z\right)^4+.....+\left(x+z\right)^{100}\ge0\)còn \(-\left(y+z+x\right)\le0\)  nên phương trình 1 vô lý 

tương tự chứng minh phương trinh 2 và 3 vô lý 

vậy \(\hept{\begin{cases}x=\varnothing\\y=\varnothing\\z=\varnothing\end{cases}}\)

thực sự bài này mới nhìn vào thì đánh lừa người làm vì các phương trình rất phức tạp nhưng nếu nhìn kĩ lại thì nó rất dễ vì các trường hợp đều vô nghiệm

20 tháng 4 2020

\(\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}=-\left(y+z+x\right)\)

Đặt : \(A=\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}\)

Ta dễ dàng nhận thấy tất cả số mũ đều chẵn 

\(=>A\ge0\)(1)

Đặt : \(B=-\left(y+z+x\right)\)

\(=>B\le0\)(2)

Từ 1 và 2 \(=>A\ge0\le B\)

Dấu "=" xảy ra khi và chỉ khi \(A=B=0\)

Do \(B=0< =>y+z+x=0\)(3)

\(A=0< =>\hept{\begin{cases}x+y=0\\y+z=0\\x+z=0\end{cases}}\)(4)

Từ 3 và 4 \(=>x=y=z=0\)

Vậy nghiệm của pt trên là : {x;y;z}={0;0;0}

30 tháng 11 2017

Đk x khác -2;-3;-4;-5

pt <=> 1/(x+2).(x+3) + 1/(x+3).(x+4) + 1/(x+4).(x+5) = 1/6

<=> 1/x+2 - 1/x+3 + 1/x+3 - 1/x+4 + 1/x+4 - 1/x+5 = 1/6

<=> 1/x+2 - 1/x+5 = 1/6

<=> x+5-x-2/(x+2).(x+5) = 1/6

<=> 3/(x+2).(x+5) = 1/6

<=> (x+2).(x+5) = 3 : 1/6 = 18

<=> x^2+7x+10 = 18

<=> x^2+7x-8=0

<=> (x-1).(x+8) = 0

<=> x1=0 hoặc x+8=0

<=> x=1 hoặc x=-8

k mk nha

31 tháng 5 2017

Ta có:

\(\frac{21}{2+\frac{1}{x+\frac{2}{4+\frac{3}{5+\frac{5}{6}}}}}=\frac{8463}{25}\)

=>\(\frac{21}{2+\frac{1}{x+\frac{35}{79}}}=\frac{8463}{25}\)

\(\Rightarrow2+\frac{1}{x+\frac{35}{79}}=\frac{21}{\frac{8463}{25}}\)

\(\Rightarrow2+\frac{1}{x+\frac{35}{79}}=\frac{25}{403}\)

\(\Rightarrow\frac{1}{x+\frac{35}{79}}=-\frac{781}{403}\)

\(\Rightarrow x+\frac{35}{79}=-\frac{403}{781}\)

\(\Rightarrow x=-0,9590430963\)

có j sai mong c thông cảm nhá :) ms lớp 7 mà :D

30 tháng 12 2019

Chia cả hai vế phương trình đầu cho : \(\left(x^2+3\right)\left(y^2+1\right)\)có:

\(1+10.\frac{x}{x^2+3}.\frac{y}{y^2+1}=0\)

Đặt: \(\frac{x}{x^2+3}=a;\frac{y}{y^2+1}=b\)

có hệ: \(\hept{\begin{cases}1+10ab=0\\a+b+\frac{3}{20}=0\end{cases}}\). Hệ khá là đơn giản. em làm tiếp nhé.