Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{x+1}=y\ge0\)
\(x^2+2x+2=3x\sqrt{x+1}\Leftrightarrow x^2+2\left(x+1\right)=3x\sqrt{x+1}\Leftrightarrow x^2+2y^2=3xy\)
\(\Leftrightarrow x^2-3xy+2y^2=0\Leftrightarrow x^2-xy-2xy+2y^2=0\Leftrightarrow x\left(x-y\right)-2y\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-2y\right)\left(x-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=2y\\x=y\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\sqrt{x+1}\\x=\sqrt{x+1}\end{cases}}\)
Đến đây đơn giản rồi bạn giải từng trường hợp là ra
ĐK: x>= -1/3
Ta có: \(pt\Leftrightarrow2x\sqrt{x^2-x+1}+4\sqrt{3x+1}=2x^2+2x+6\)
<=> \(x^2-2x\sqrt{x^2-x+1}+\left(x^2-x+1\right)+\left(3x+1\right)-2.\sqrt{3x+1}.2+4=0\)
\(\Leftrightarrow\left(x-\sqrt{x^2-x+1}\right)^2+\left(\sqrt{3x+1}-2\right)^2=0\)
Mà : \(\left(x-\sqrt{x^2-x+1}\right)^2\ge0;\left(\sqrt{3x+1}-2\right)^2\ge0\)
Khi đó: \(\left(x-\sqrt{x^2-x+1}\right)^2+\left(\sqrt{3x+1}-2\right)^2\ge0\)
Dấu "=" xảy ra khi và chỉ khi:
\(\hept{\begin{cases}\left(x-\sqrt{x^2-x+1}\right)^2=0\\\left(\sqrt{3x+1}-2\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2=x^2-x+1,x\ge0\\3x+1=4\end{cases}}\Leftrightarrow x=1\)tm đk
Vậy x=1
Ta có thể dùng cô si chăng?
ĐK: \(x\ge-\frac{1}{3}\)
\(VT=\sqrt{x^2\left(x^2-x+1\right)}+\sqrt{4\left(3x+1\right)}\)
\(\le\frac{x^2+x^2-x+1}{2}+\frac{4+3x+1}{2}=\frac{2x^2+2x+6}{2}=x^2+x+3=VP\)
Để đẳng thức xảy ra, tức là xảy ra đẳng thức ở phương trình thì:
\(\hept{\begin{cases}x^2=x^2-x+1\\4=3x+1\end{cases}}\Leftrightarrow x=1\)
Vậy...
Is it true??
Lời giải:
Với mọi $x$ thuộc ĐKXĐ, ta luôn có:
\(\left\{\begin{matrix} \sqrt{3x+x^2+\frac{9}{4}}\geq 0\\ \sqrt{x^2+3x+1}\geq 0\end{matrix}\right.\)
Do đó, để \(\sqrt{3x+x^2+\frac{9}{4}}+\sqrt{x^2+3x+1}=0\) thì:
\(\left\{\begin{matrix} \sqrt{3x+x^2+\frac{9}{4}}= 0\\ \sqrt{x^2+3x+1}=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x=\frac{-3}{2}\\ x=\frac{3\pm \sqrt{5}}{2}\end{matrix}\right.\) (vô lý)
Do đó pt vô nghiệm.
nếu dòng cuối tìm đc x là cùng 1 số thì số đó là nghiệm của pt đúng ko ạ?
TXĐ: \(x\ge0\)
Phương trình đã cho tương đương:
\(\dfrac{\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(\sqrt{2x+1}+\sqrt{3x}\right)}{\sqrt{2x+1}+\sqrt{3x}}=x-1\)
\(\Leftrightarrow\dfrac{2x+1-3x}{\sqrt{2x+1}+\sqrt{3x}}=x-1\Leftrightarrow\dfrac{-\left(x-1\right)}{\sqrt{2x+1}+\sqrt{3x}}=x-1\)
\(\Leftrightarrow\left(x-1\right)\left(1+\dfrac{1}{\sqrt{2x+1}+\sqrt{3x}}\right)=0\)
\(\Leftrightarrow x-1=0\) (do \(1+\dfrac{1}{\sqrt{2x+1}+\sqrt{3x}}>0\) \(\forall x\ge0\))
\(\Leftrightarrow x=1\)
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
Điều kiện : x\(\ge0\)
\(\Leftrightarrow\sqrt{2x+1}=x-1+\sqrt{3x}\)
\(\Leftrightarrow\left(\sqrt{2x+1}\right)^2=\left(x-1+\sqrt{3x}\right)^2\)
\(\Leftrightarrow2x+1=\left(x-1\right)^2+2\left(x-1\right)\sqrt{3x}+3x\)
\(\Leftrightarrow2x+1=x^2-2x+1+2\left(x-1\right)\sqrt{3x}+3x\)
\(\Leftrightarrow2x+1-x^2-x-x-2\left(x-1\right)\sqrt{3x}=0\)
\(\Leftrightarrow-x^2+x-2\left(x-1\right)\sqrt{3x}=0\)
\(\Leftrightarrow-x\left(x-1\right)-2\left(x-1\right)\sqrt{3x}=0\)
\(\Leftrightarrow\left(x-1\right)\left(-x-2\sqrt{3x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-x-2\sqrt[]{3x}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\-\sqrt{x}\left(\sqrt{x}+2\sqrt{3}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-\sqrt{x}=0\\\sqrt{x}+2\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\\\sqrt{x}=-2\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\\x\in\varnothing\end{matrix}\right.\) Vậy pt tập nghiệm S={1;0}
Đặt \(\sqrt{x+1}=a\) \(ĐKXĐ:x\ge0\)
\(\sqrt{3x}=b\)
Ta có: \(a-b=b^2-a^2\)
\(\Leftrightarrow a-b+a^2-b^2=0\)
\(\Leftrightarrow\left(a-b\right)+\left(a+b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b+1\right)=0\)
Mà \(a+b+1>0\forall x\)
\(\Rightarrow a-b=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{x+1}=\sqrt{3x}\)
\(\Leftrightarrow x+1=3x\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{1}{2}\right\}\)
\(ĐKXĐ:x\ge0\)
Ta có PT \(\Leftrightarrow\sqrt{x+1}-\sqrt{3x}-\left(2x-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+1}-\frac{\sqrt{6}}{2}\right)-\left(\sqrt{3x}-\frac{\sqrt{6}}{2}\right)-\left(2x-1\right)=0\)
\(\Leftrightarrow\frac{x+1-\frac{6}{4}}{\sqrt{x+1}+\frac{\sqrt{6}}{2}}-\frac{3x-\frac{6}{4}}{\sqrt{3x}+\frac{\sqrt{6}}{2}}-\left(2x-1\right)=0\)
\(\Leftrightarrow\frac{x-\frac{1}{2}}{\sqrt{x+1}+\frac{\sqrt{6}}{2}}-\frac{3\left(x-\frac{1}{2}\right)}{\sqrt{3x}+\frac{\sqrt{6}}{2}}-2\left(x-\frac{1}{2}\right)=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)\left(\frac{1}{\sqrt{x+1}+\frac{\sqrt{6}}{2}}-\frac{3}{\sqrt{3x}+\frac{\sqrt{6}}{2}}-2\right)=0\)
\(\Rightarrow x=\frac{1}{2}\)(TMĐKXĐ)