\(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}-1}\)):(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2021

a, \(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}-1}\right):\left(\frac{2}{x}-\frac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\left(\frac{2\sqrt{x}}{\sqrt{x}-1}\right):\left(\frac{2\sqrt{x}+2-2+x}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\frac{2\sqrt{x}}{\sqrt{x}-1}:\left(\frac{x+2\sqrt{x}}{x\left(\sqrt{x}+1\right)}\right)=\frac{2x\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\frac{2x\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

b, Ta có \(P=4\Rightarrow\frac{2x\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=4\)

\(\Leftrightarrow2x\left(\sqrt{x}+1\right)=4\left(x+\sqrt{x}-2\right)\)

\(\Leftrightarrow2x\sqrt{x}+2x=4x+4\sqrt{x}-8\Leftrightarrow2x\sqrt{x}-2x-4\sqrt{x}+8=0\)

Ps : bạn kiểm tra lại đề nhé, nhìn phần a thôi thấy sai rồi 

12 tháng 9 2018

\(B=\frac{2+\sqrt{x}}{x-4\sqrt{x}+4}:\left(\frac{\sqrt{x}+2}{\sqrt{x}}+\frac{1}{\sqrt{x}-2}+\frac{6-x}{x+2\sqrt{x}}\right)\)

\(B=\frac{2+\sqrt{x}}{\left(\sqrt{x}-2\right)^2}:\left(\frac{\sqrt{x}+2}{\sqrt{x}}+\frac{1}{\sqrt{x}-2}+\frac{6-x}{\sqrt{x}\left(\sqrt{x}+2\right)}\right)\)

\(B=\frac{2+\sqrt{x}}{\left(\sqrt{x}-2\right)^2}:\left(\frac{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)+\sqrt{x}\left(\sqrt{x}+2\right)+\left(6-x\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)

\(B=\frac{2+\sqrt{x}}{\left(\sqrt{x}-2\right)^2}:\left(\frac{x\sqrt{x}-8+x+2\sqrt{x}+6\sqrt{x}-12-x\sqrt{x}+2x}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)

\(B=\frac{2+\sqrt{x}}{\left(\sqrt{x}-2\right)^2}:\left(\frac{3x+8\sqrt{x}-20}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)

\(B=\frac{\sqrt{x}\left(2+\sqrt{x}\right)^2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)^2\left(3x+8\sqrt{x}-20\right)}\)

\(B=\frac{\sqrt{x}\left(2+\sqrt{x}\right)^2}{\left(\sqrt{x}-2\right)\left(3x+8\sqrt{x}-20\right)}\)

tới đây mình bí rồi cậu làm giúp mình đi

mại dzo

10 tháng 2 2018

\(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}+\frac{3x+3}{x-9}\right)\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(P=\left[\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}+\frac{3x+3}{x-9}\right]\) \(\left[\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right]\)

\(P=\frac{2x-6\sqrt{x}+x+3\sqrt{x}+3x+3}{x-9}.\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(P=\frac{6x-3\sqrt{x}+3}{x-9}.\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

11 tháng 2 2018

Đề sai rồi