K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2015

x + ( x +1 ) + ( x +2 ) + ( x + 3 ) +. . .  + ( x + 2009 ) = 2009 . 2010

              x .  2009+  ( 1 + 2+ 3+ ..+2009)                  = 2009.2010

              x . 2009   + [(2009+ 1 ) x 2009 : 2  ]             = 2009.2010 

                    x . 2009  +   1005 x 2009                       = 2009.2010

                       (x+1005 ) .2009                                  = 2009.2010

                                                    x + 1005               = 2010

                                                                  x             = 1005

Ta có:

x + ( x +1 ) + ( x +2 ) + ( x + 3 ) +. . .  + ( x + 2009 ) = 2009 . 2010

              x .  2009+  ( 1 + 2+ 3+ ..+2009)                  = 2009.2010

              x . 2009   + [(2009+ 1 ) x 2009 : 2  ]             = 2009.2010 

                    x . 2009  +   1005 x 2009                       = 2009.2010

                       (x+1005 ) .2009                                  = 2009.2010

                                                    x + 1005               = 2010

                                                                  x             = 1005

P/s tham khảo nha

19 tháng 7 2019

x+1/2009 + x+ 1/2010 + x + 1/2011 = x+1/2012 + x + 1/2013 + x+1/2014

= x+1/2009 + x+1/2010 + x+1/2011 - x+1/2012 - x+1/2013 - x+1/2014 = 0

= (x+1) . ( 1/2009 + 1/2010 + 1/2011 - 1/2012 - 1/2013 - 1/2014) = 0

=x+ = 0 ( Vì 1/2009 + 1/2010 + 1/2011 - 1/2012 - 1/2013 - 1/2014 ≠ 0 )

x=-1

Vậy x=-1

19 tháng 7 2019

Bạn sai rồi

26 tháng 10 2019

x=2011 hoặc x=-2010

6 tháng 1 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{x\left(x+1\right)}=\frac{2009}{2010}\)

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{x}+\frac{1}{x}-\frac{1}{\left(x+1\right)}=\frac{2009}{2010}\)

\(1-\frac{1}{x+1}=\frac{2009}{2010}\)

\(\frac{1}{x+1}=1-\frac{2009}{2010}=\frac{1}{2010}\)

\(\Leftrightarrow\) x + 1=  2010 

< = > x = 2010 - 1 = 2009

18 tháng 4 2019

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Em tham khảo nhé!

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

=>\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

=> \(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2007}{2009}\)

=> \(2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2007}{2009}\)

=> \(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)

=> \(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)

=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{2009}:2=\frac{2007}{4018}\)

=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{2007}{4018}=\frac{2009}{4018}-\frac{2007}{4018}\)

=> \(\frac{1}{x+1}=\frac{2}{4018}=\frac{1}{2009}\)

=> \(1\cdot2009=1\left(x+1\right)\)

=> \(x+1=2009\Rightarrow x=2009-1=2008\)

Vậy x = 2008

Chúc bn hk tốt !

\(a,2x+5=x-1\)

\(2x+5-\left(x-1\right)=0\)

\(2x+5-x+1=0\)

\(2x-x=0-5-1\)

\(x=-6\)

3 tháng 3 2020

a) 2x+5=x- 1

     2x-x=-1-5

      X=-6

27 tháng 4 2018

Đặt \(C=\left(1+\frac{2}{3}\right)\left(1+\frac{2}{5}\right)\left(1+\frac{2}{7}\right).....\left(1+\frac{2}{2009}\right)\left(1+\frac{2}{2011}\right)\) ta có : 

\(C=\left(\frac{3+2}{3}\right)\left(\frac{5+2}{3+2}\right)\left(\frac{7+2}{5+2}\right).....\left(\frac{2009+2}{2007+2}\right)\left(\frac{2011+2}{2009+2}\right)\)

\(C=\frac{\left(3+2\right)\left(5+2\right)\left(7+2\right).....\left(2009+2\right)\left(2011+2\right)}{3\left(3+2\right)\left(5+2\right).....\left(2007+2\right)\left(2009+2\right)}\)

\(C=\frac{2011+2}{3}\)

\(C=\frac{2013}{3}\)

\(C=671\)

Vậy \(C=671\)

Chúc bạn học tốt ~ 

27 tháng 4 2018

1/2011

24 tháng 4 2019

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009}\)

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{2009}\)

\(1-\frac{1}{x+1}=\frac{2008}{2009}\)

\(\frac{1}{x+1}=1-\frac{2008}{2009}=\frac{1}{2009}\)

\(\Rightarrow x+1=2009\)

\(\Leftrightarrow x=2008\)