Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\dfrac{2+\sqrt{x}}{\sqrt{x}}=\dfrac{2}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}}=\dfrac{2}{\sqrt{x}}+1\)
A sẽ nguyên khi: \(2⋮\sqrt{x}\) hay \(\sqrt{x}\inƯ\left(2\right)\)
\(Ư\left(2\right)=\left\{-2;1;-1;2\right\}\)
Mà: \(\sqrt{x}\ge0\)
Loại \(-1;-2\)
\(\Rightarrow\sqrt{x}\in\left\{2;1\right\}\)
\(\Rightarrow x\in\left\{4;1\right\}\)
Vậy A sẽ nguyên khi \(x\in\left\{1;4\right\}\)
Để A nguyên thì cănx +2 chia hết cho căn x
=>căn x thuộc Ư(2)
=>căn x=1 hoặc căn x=2
=>x=4 hoặc x=1
\(P=A:B=\dfrac{\sqrt{x}+2}{\sqrt{x}}:\dfrac{\sqrt{x}+2}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
P>3/2
=>P-3/2>0
=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{3}{2}>0\)
=>\(\dfrac{2\sqrt{x}+2-3\sqrt{x}}{2\sqrt{x}}>0\)
=>-căn x+2>0
=>-căn x>-2
=>0<x<4
\(a,P=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{2}=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\\ b,P=1\Leftrightarrow\sqrt{x}+1=2\sqrt{x}\\ \Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\\ c,P=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\in Z\\ \Leftrightarrow\sqrt{x}+1⋮2\sqrt{x}\\ \Leftrightarrow2\sqrt{x}+2⋮2\sqrt{x}\\ \Leftrightarrow2\sqrt{x}\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow\sqrt{x}=1\left(\sqrt{x}>0\right)\\ \Leftrightarrow x=1\)
P<1/2
=>P-1/2<0
=>\(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{1}{2}< 0\)
=>\(\dfrac{2\sqrt{x}-\sqrt{x}+2}{2\left(\sqrt{x}-2\right)}< 0\)
=>căn x-2<0
=>0<=x<4
a) đk: \(x\ne0;4\); \(x>0\)
P = \(\left[\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{1}{\sqrt{x}-2}\right]\times\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)
= \(\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\times\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)
= \(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-2\right)}.\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
b) Để P < \(\dfrac{1}{2}\)
<=> \(\dfrac{\sqrt{x}-1}{\sqrt{x}}< \dfrac{1}{2}\)
<=> \(1-\dfrac{1}{\sqrt{x}}< \dfrac{1}{2}\)
<=> \(\dfrac{1}{\sqrt{x}}>\dfrac{1}{2}\)
<=> \(\sqrt{x}< 2\)
<=> x < 4
<=> 0 < x < 4
\(P=\dfrac{B}{A}\\ =\dfrac{\sqrt{x}+2}{\sqrt{x}-1}:\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\\ =\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\\ =\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\\ =\dfrac{\sqrt{x}-1-2}{\sqrt{x}-1}\\ =1-\dfrac{2}{\sqrt{x}-1}\)
Để \(P=\dfrac{B}{A}\) có giá trị nguyên
Thì \(2⋮\left(\sqrt{x}-1\right)\Rightarrow\left(\sqrt{x}-1\right)\inƯ\left(2\right)=\left\{2;-2;1;-1\right\}\)
\(\sqrt{x}-1\) | 2 | -2 | 1 | -1 |
\(x\) | 9 | ∅ | 4 | 0 |
Nhận - Loại | nhận | loại | nhận | nhận |
Vậy \(x\in\left\{9;4;0\right\}\) thì \(x\) nguyên và \(P\) có giá trị nguyên
Lời giải:
a. ĐKXĐ: $x\geq 0$
$P< \frac{1}{2}\Leftrightarrow \frac{\sqrt{x}}{\sqrt{x}+2}< \frac{1}{2}$
$\Leftrightarrow \frac{\sqrt{x}}{\sqrt{x}+2}-\frac{1}{2}<0$
$\Leftrightarrow \frac{\sqrt{x}-2}{2(\sqrt{x}+2)}<0$
$\Leftrightarrow \sqrt{x}-2<0$ (do mẫu dương rồi)
$\Leftrightarrow 0\leq x< 4$
Kết hợp đkxđ suy ra $0\leq x< 4$
b.
Với $x\geq 0$ thì $P\geq 0$
Lại có: $P<1$ (do tử nhỏ hơn mẫu)
$\Rightarrow P$ nguyên khi mà $P=0$
$\Leftrightarrow x=0$
cảm ơn thầy ạ