K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2019

Ta có:

      4 b 2 c 2   -   c 2 + b 2 - a 2 2                         = 2 b c 2 - c 2 + b 2 - a 2 2                       = 2 b c +   c 2 + b 2 - a 2 2 b c - c 2 - b 2 + a 2                       = b + c 2 - a 2 a 2 - b 2   -   2 b c   + c 2                       = b + c 2 - a 2 a 2 - b - c 2                       = b + c + a b + c - a a + b - c a - b + c  

Đáp án cần chọn là : A

15 tháng 7 2018

c)   \(a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\)

\(=a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)-c^2a^2\left[\left(a-b\right)+\left(b-c\right)\right]\)

\(=a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)-c^2a^2\left(a-b\right)-c^2a^2\left(b-c\right)\)

\(=\left(a-b\right)\left(a^2b^2-c^2a^2\right)+\left(b-c\right)\left(b^2c^2-c^2a^2\right)\)

\(=a^2\left(a-b\right)\left(b-c\right)\left(b+c\right)+c^2\left(b-c\right)\left(b-a\right)\left(a+b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left[a^2\left(b+c\right)-c^2\left(a+b\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(ab+bc+ca\right)\)

15 tháng 7 2018

Giúp tôi ! Làm ơn đi.....Help me@@

30 tháng 7 2017

b) \(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)

\(=a^3\left(b-c\right)-b^3\left[\left(b-c\right)+\left(a-b\right)\right]+c^3\left(a-b\right)\)

\(=a^3\left(b-c\right)-b^3\left(b-c\right)-b^3\left(a-b\right)+c^3\left(a-b\right)\)

\(=\left(b-c\right)\left(a^3-b^3\right)- \left(a-b\right)\left(b^3-c^3\right)\)

\(=\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)-\left(a-b\right)\left(b-c\right)\left(b^2+bc+c^2\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a^2+ab+b^2-b^2-bc-c^2\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a^2-c^2+ab-bc\right)\)

\(=\left(a-b\right)\left(b-c\right)\left[\left(a-c\right)\left(a+c\right)+b\left(a-c\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(a+b+c\right)\)

31 tháng 10 2015

\(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-c\right)\)

\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-b+b-c\right)\)

\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-b\right)-ca\left(b-c\right)\)

\(=\left(a-b\right)\left(ab-ca\right)+\left(b-c\right)\left(bc-ca\right)\)

\(=\left(a-b\right)a\left(b-c\right)+\left(b-c\right)c\left(b-a\right)\)

\(=\left(a-b\right)a\left(b-c\right)-\left(b-c\right)c\left(a-b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

mình làm vội, có chỗ nào sai bạn thông cảm nha