Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(S=\frac{1}{201}+\frac{1}{202}+...+\frac{1}{399}+\frac{1}{400}\)
Ta thấy :
\(\frac{1}{201}>\frac{1}{400}\)
\(\frac{1}{202}>\frac{1}{400}\)
...
\(\frac{1}{399}>\frac{1}{400}\)
\(\Rightarrow S>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)
có 200 dãy \(\Rightarrow S>\frac{200}{400}=\frac{1}{2}\)
Vậy : \(S>\frac{1}{2}\)
Vì \(\frac{1}{201}>\frac{1}{400}\)
\(\frac{1}{202}>\frac{1}{400}\)
\(\frac{1}{203}>\frac{1}{400}\)
.................
\(\frac{1}{399}>\frac{1}{400}\)
⇒ \(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{399}>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)(199 số hạng \(\frac{1}{400}\))
⇒ \(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{399}+\frac{1}{400}>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)(200 số hạng \(\frac{1}{400}\)) = 200.\(\frac{1}{400}\)=\(\frac{1}{2}\)
⇒ A > \(\frac{1}{2}\)
Vậy A > \(\frac{1}{2}\) (ĐPCM)
Các phân số \(\frac{1}{201};\frac{1}{202};...;\frac{1}{400}\) đều lớn hơn \(\frac{1}{400}\Rightarrow\frac{1}{201}+\frac{1}{202}+...+\frac{1}{400}>\frac{1}{400}.200=\frac{1}{2}\) (do có 200 số hạng)
=> điều phải chứng minh
2009/2010=1-1/2010<1-1/2011=2010/2011
vậy 2009/2010<2010/2011
3^400=(3^4)^100=81^100>64^100=4^300
=>1/3^400<1/4^300
Vậy 1/3^400<1/4^300
mik làm câu A thôi nha
ta có :
1 - 2009/2010 = 1/2010
1 - 2010/2011 = 1/2011
Phần bù nào bé thì phân số đó lớn .
Vì 1/2010 > 1/2011
Nên 2009/2010 > 2010/2011
Ta thấy hiệu giữa mẫu số và tử số của hai phân số bằng nhau ( = 1 )
Để so sánh hai phân số, ta so sánh các hiệu.
\(1-\frac{2009}{2010}\)và \(1-\frac{2010}{2011}\)
Ta có :
\(1-\frac{2009}{2010}=\frac{2010}{2010}-\frac{2009}{2010}=\frac{1}{2010}\)
\(1-\frac{2010}{2011}=\frac{2011}{2011}-\frac{2010}{2011}=\frac{1}{2011}\)
Ta thấy :
\(\frac{1}{2010}>\frac{1}{2011}\)
Hay :
\(1-\frac{2009}{2010}>1-\frac{2010}{2011}\)
Vậy \(\frac{2009}{2010}< \frac{2010}{2011}\)
a/\(\frac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}\)
=\(\frac{2^3.5^3.7^4}{2^2.5^2.7^4}\)
=2.5
=10
1/201 + 1/202 + ... + 1/400 > 1/400 x 200
1/201 + 1/202 + ... + 1/400 > 1/2
Vậy 1/201 + 1/202 + ... + 1/400 > 1/2
Đặt \(A=\frac{1}{201}+\frac{1}{202}+...+\frac{1}{399}+\frac{1}{400}\)
Vì \(\frac{1}{201}>\frac{1}{202}>...>\frac{1}{399}>\frac{1}{400}\)nên :
\(A< \left(\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\right)\)( Có 200 số )
\(A< \frac{1}{400}\times200\)
\(A< \frac{200}{400}\)
\(A< \frac{1}{2}\)( Điều phải chứng minh )