Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giúp mình với Nguyễn Huy Tú;Ace Legona;soyeon_Tiểubàng giải;Lê Nguyên Hạo...
Tại x = 1 thì ax2 + bx + c = a.12 + b .1 + c = a + b + c = 0
Vậy x = 1 là nghiệm của đa thức ax2 + bx + c nếu a + b+ c = 0
a) \(A\left(x\right)+B\left(x\right)\)
\(=-x^3-5x^2+7x+2+x^3+6x^2-3x-7\)
\(=x^2+4x-5\)
\(A\left(x\right)-B\left(x\right)\)
\(=-x^3-5x^2+7x+2-x^3-6x^2+3x+7\)
\(=-2x^3-11x^2+11x+9\)
b) Thay \(x=1\) vào \(x^2+4x-5\), ta được:
\(1^2+4\cdot1-5=1+4-5=0\)
Thay \(x=1\) vào \(A\left(x\right)\), ta được:
\(A\left(x\right)=-1^3-5\cdot1^2+7\cdot1+2=-1-5+7+2=3\)
a)cho A(x) =m*32 -2*3=0=>9m-6=0=>9m=6=>m=2/3
b)có B(x)=x2 +2*2*x+4+6
Áp dụng hằng đẳng thức a2 +2ab+b2=(a+b)2
có B(x)=(x+2)2 +6 >0
=>đpcm
a) Ta có
x2+x+2=(x2+x+1)+1=(x2+x+1/4+3/4)+1=\(\left(x^2+2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right)+\left(\frac{3}{4}+1\right)=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\)
ta có (x+1/2)2\(\ge0\)( lũy thừa bậc chẵn)
=> Đa thức ở phần a lớn hơn 0 và nó ko có nghiệm
b) Ta có x4\(\ge0\)( lũy thừa bậc chẵn)
3x2\(\ge0\)( lí do tương tự)
=> Đa thức ở phần b lớn hơn 0 và nó ko có nghiệm
\(a,x^2+x+\frac{1}{4}+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\)
\(Do\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{7}{4}>0\)
=> x2+x+2 vô nghiệm
\(b,x^4+2.\frac{3}{2}x^2+\frac{9}{4}+\frac{11}{4}=\left(x^2+\frac{3}{2}\right)^2+\frac{11}{4}\)
\(Do\left(x^2+\frac{3}{2}\right)^2\ge0\Rightarrow\left(x^2+\frac{3}{2}\right)^2+\frac{11}{4}>0\)
=>x4+3x2+5 vô nghiệm
\(g\left(-1\right)=\left(-1\right)^2+a\cdot\left(-1\right)+b=1+\left(-a\right)+b=1-a+b\)
thế a=b+1 vào g(1), ta có:
\(g\left(-1\right)=1-\left(b+1\right)+b=1+b-b-1=0\)
Vậy nếu a=b+1 thì x=-1 là nghiệm của đa thức g(x)