Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3n + 4 = 3n - 6 + 10
= 3(n - 2) + 10
Để (3n + 4) ⋮ (n - 2) thì 10 ⋮ (n - 2)
⇒ n - 2 ∈ Ư(10) = {-10; -5; -2; -1; 1; 2; 5; 10}
⇒ n ∈ {-8; -3; 0; 1; 3; 4; 7; 12}
Mà n là số tự nhiên
⇒ n ∈ {0; 1; 3; 4; 7; 12}
xét 2A=22+23+24+...+211
-A=2+22+23+......+210
A=211-2
ta thấy 2/3 dư 2
22=4/3 dư 2
23=8/3 3 dư 2
..................................
211/3 dư 2
=>211-2laf 1 số chia hết cho 3
2A=2(2+2^2+2^3+2^4+...+2^8+2^9+2^10)
2A=2^2+2^3+2^4+2^5+...+2^9+2^10+2^11)
2A-A=(2^2+2^3+2^4+2^5+...+2^9+2^10+2^11)-(2+2^2+2^3+2^4+...+2^8+2^9+2^10)
A=2^11-2
A=2046
Mà 2046 chia hết cho 3
Vậy A chia hết cho 3
Điều phải chứng minh
1) Không có số tự nhiên nào nhỏ hơn 1 chia 5 dư 3
2) + Nếu n lẻ thì n + 5 chẵn => n + 5 chia hết cho 2 =>n.(n + 5) chia hết cho 2
+ Nếu n chẵn thì n chia hết cho 2 => n.(n + 5) chia hết cho 2
=> n.(n + 5) luôn chia hết cho 2
3) A = n2 + n + 1
A = n.(n + 1) + 1
a) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp =>n.(n + 1) chia hết cho 2 mà 1 không chia hết cho 2
=> A không chia hết cho 2
b) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp => n.(n + 1) chỉ có thể tận cùng là 0; 2; 6
=> A = n.(n + 1) + 1 chỉ có thể tận cùng là 1; 3; 7 không chia hết cho 5
de sai bet...vi 2.6=12ro ra la tich 2stn chan ma 12 khong chia het cho 8.de dung phai la:cmr tich 2 so chan lien tiep chia het cho 8........giai:trong 2 so chan lien tiep co 1so chia het cho 2 so kia chia het cho4nen tich 2 so do chia het cho8
\(A=2+2^2+2^3+...+2^{260}\)
\(A=2\left(1+2\right)+2^2\left(1+2\right)+2^3\left(1+2\right)+...+2^{259}\left(1+2\right)\)
\(A=2.3+2^2.3+2^3.3+...+2^{259}.3\)
\(A=3\left(2+2^2+2^3+...+2^{259}\right)⋮3\left(1\right)\)
\(A=\left(2+2^2+2^3\right)+...+\left(2^{258}+2^{259}+2^{260}\right)\)
\(A=2.\left(1+2+2^2\right)+...+2^{258}.\left(1+2+2^2\right)\)
\(A=2.7+...+2^{258}.7\Rightarrow A=7\left(2+...+2^{258}\right)⋮7\left(2\right)\)
\(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{257}+2^{258}+2^{259}+2^{260}\right)\)
\(A=2.\left(1+2+2^2+2^3\right)+...+2^{257}.\left(1+2+2^2+2^3\right)\)
\(A=2.15+...+2^{257}.15\Rightarrow A=15\left(2+...+2^{257}\right)⋮5\left(15⋮5\right)\left(3\right)\)
\(\left(1\right),\left(2\right),\left(3\right)\Rightarrow dpcm\)