K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

gọi d là (4n+7,3n+2)

ta có : 

4n+7 chia hết cho d

3n+2 chia hết cho d

=>3(4n+7)-4(3n+2)=12n+21-12n-8=13

=>d=13=>hai số trên là 2 số nguyên tố cùng nhau( chắc sai hihi)

28 tháng 11 2018

Gọi ƯCLN(4n+7,3n+2)=d

=>\(\hept{\begin{cases}4n+7⋮d\\3n+2⋮d\end{cases}}\)=>\(\hept{\begin{cases}3\left(4n+7\right)⋮d\\4\left(3n+2\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}12n+21⋮d\\12n+8⋮d\end{cases}}\)

<=> 12n + 21 - 12n -8 \(⋮\)d

<=> 21 - 8 \(⋮\)d

<=> 13  \(⋮\)d

<=> d \(\in\)Ư(13)

<=> d \(\in\){1;13}

Vậy 4n + 7 và 3n + 2 có thể là 2 số nguyên tố cùng nhau hoặc ko phải 2 số nguyên tố cùng nhau

(chắc sai rồi):| đúng nhớ K

10 tháng 1 2016

Gọi d thuộc Ư(6n+5,4n+3)

=>6n+5 chia hết cho d ; 4n+3 chia hết cho d

=>2(6n+5) chia hết cho d ; 3(4n+3) chia hết cho d

=>(12n+10)-(12n+9) chia hết cho d

=> 1 chia hết cho d

=>d=1

Vậy 6n+5 và 4n+3 là 2 số nguyên tố cùng nhau

14 tháng 11 2017

 Gọi (14n+3,21n+4)=d (d thuộc N)   

=>14n+3,21n+4 chia hết cho d  =>3(14n+3)-2(21n+4)=1 chia hết cho d 

=>d=1 

Vậy 14n+3 và 21n+4 là hai số nguyên tố cùng nhau với mọi số tự nhiên 

14 tháng 11 2017

Gọi d là một ước chung của hai số 21n+4 và 14n+3 

21n+4 và 14n+3 chia hết cho d 
=> (21n+4) - (14n+3) = 7n+1 chia hết cho d 
=> 2(7n+1) = 14n+2 chia hết cho d 

14n+2 và 14n+3 chia hết cho d 
=> (14n+3) - (14n+2) = 1 chia hết cho d 
Vậy d = 1 

Ước chung lớn nhất bằng 1.

25 tháng 7 2017

a) Giả sử \(2n+3;4n+8\) chưa nguyên tố cùng nhau

\(\Leftrightarrow2n+3;4n+8\)có ước chung là số nguyên tố

Gọi \(d=ƯC\left(2n+3;4n+8\right)\)

\(\Leftrightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

\(\Leftrightarrow2⋮d\)

Vì \(d\in N;2⋮d\Leftrightarrow d=1;2\)

+) \(d=2\Leftrightarrow2n+3⋮2\) (vô lí)

\(\Leftrightarrow d=1\)

\(\Leftrightarrow2n+3;4n+8\)nguyên tố cùng nhau với mọi n

Câu b tương tự

Chúc b hc tốt!

25 tháng 7 2017

a)Gọi UCLN của 2n+3 và 4n+8 là d                        (d thuộc N*)

=>\(\hept{\begin{cases}2n+3\\4n+8\end{cases}}\)cùng chia hết cho d

=>(4n+8)-(2n+3) chia hết cho d

=>(4n+8)-2(2n+3) chia hết cho d

=>4n+8-4n-6 chia hết cho d

=>2 chia hết cho d

=>d thuộc Ư của 2

=>\(\orbr{\begin{cases}d=1\\d=2\end{cases}}\)

Có 2n+3 chia hết cho d

Mà 2n+3 là số lẻ nên d không thể = 2             (ước của số lẻ không =2)

=>d=1

=>UCLN(2n+3;4n+8)=1

Vậy 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau

16 tháng 11 2018

Giả sử rằng với n = k (k thuộc N) ta có 2k+1 và 6k+5 ko phải là 2 số nguyên tố cùng nhau, nghĩa là UCLN(2k+1;6k+5) = d (d > 1) 
d là ước của 2k+1 và 6k+5 ---> d là ước của 6k+5 - 3.(2k+1) = 2 ---> d = 2 (vì d > 1) 
Nhưng điều đó là vô lý vì 2 không thể là ước của 2k+1 và 6k+5 được 
Do đó điều giả sử trên là sai ---> 2n+1 và 6n+5 là 2 số nguyên tố cùng nhau với mọi n thuộc N.

9 tháng 11 2019

ghi sai đề phải ko

9 tháng 11 2019

Ko, ghi trong đề ôn tập kiểm tra 1 tiết.

2n + 5 và 3n+ 7

=> Gợi UCLN của 2n+ 5 và 3n+ 7 là d

=> 2n+5 chia hết cho d

=> 3n+7 chai hết cho d

=> 3( 2n+5) chia hết cho d

=> 2( 3n+7) chia hết cho d

=> 6n + 15 chia hết cho d

=> 6n+ 14 chia hết cho d

=> 6n+ 15- 6n + 14 chia hết cho d

=> 1 chia hết cho d

=> d= 1

=> UCLN ( 2n+5) và 3n+7 là 1

=> đpcm

Tick nhé 

20 tháng 1 2016

Gọi UCLN(2n + 5; 3n + 7) là d

=> 2n + 5 chia hết cho d => 3(2n + 5) chia hết cho d

     3n + 7 chia hết cho d => 2(3n + 7) chia hết cho d

=> 3(2n + 5) - 2(3n + 7) chia hết cho d

=> 6n + 15 - 6n - 14 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=>UCLN(2n + 5; 3n + 7) = 1

Vậy...

26 tháng 8 2016

ko làm đcj

26 tháng 8 2016

a) Gọi d = ƯCLN(7n + 10; 5n + 7) (d thuộc N*)

=> 7n + 10 chia hết cho d; 5n + 7 chia hết cho d

=> 5.(7n + 10) chia hết cho d; 7.(5n + 7) chia hết cho d

=> 35n + 50 chia hết cho d; 35n + 49 chia hết cho d

=> (35n + 50) - (35n + 49) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(7n + 10; 5n + 7) = 1

=> 7n + 10 và 5n + 7 là 2 số nguyên tố cùng nhau ( đpcm)

b) Lm tương tự, lấy (2n + 3) × 2 đến chỗ 2 chia hết cho d lí luận 2n + 3 lẻ => d lẻ => d = 1 ...

Gọi ƯCLN (3n+2;4n+3)=d

=> (4n+3) chia hết cho d => 3(4n+3) chia hết cho d => 12n+9 chia hết cho d

=> (3n+2) chia hết cho d => 4(3n+2) chia hết cho d => 12n+8 chia hết cho d

=> (12n+9) - (12n+8) chia hết cho d

=> 1 chia hết cho d

=> d\(\in\)Ư(1)

Mà d lớn nhất

=> d=1

=>3n+2 và 4n+3 là hai số nguyên tố cùng nhau (đpcm)

Bài này mkik mới học hồi sáng, bạn kia làm đúng đó,  bạn ấy đi(^_^)