K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2020

a) Ta có: \(\left(a^2+b^2\right)^2-4a^2b^2=\left(a^2+b^2\right)^2-\left(2ab\right)^2\)

\(=\left(a^2+b^2-2ab\right)\left(a^2+b^2+2ab\right)=\left(a-b\right)^2.\left(a+b\right)^2\)( đpcm )

b) Ta có: \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3-3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

\(=\left(a-b+b-c\right)^3-3\left(a-b\right)\left(b-c\right)\left(a-b+b-c\right)+\left(c-a\right)^3\)

\(-3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

\(=\left(a-c\right)^3-3\left(a-b\right)\left(b-c\right)\left(a-c\right)+\left(c-a\right)^3-3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

\(=\left(a-c\right)^3+\left(c-a\right)^3-3\left(a-b\right)\left(b-c\right)\left(a-c\right)-3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

\(=\left(a-c\right)^3-\left(a-c\right)^3+3\left(a-b\right)\left(b-c\right)\left(c-a\right)-3\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\)

\(\Rightarrow\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)( đpcm )

27 tháng 8 2020

1) Ta có: \(\left(a^2+b^2\right)^2-4a^2b^2\)

\(=a^4+2a^2b^2+b^4-4a^2b^2\)

\(=a^4-2a^2b^2+b^4\)

\(=\left(a^2-b^2\right)^2\)

\(=\left[\left(a-b\right)\left(a+b\right)\right]^2\)

\(=\left(a-b\right)^2\left(a+b\right)^2\)

2) Ta có: \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)

\(=\left(a-b+b-c\right)\left[\left(a-b\right)^2-\left(a-b\right)\left(b-c\right)+\left(b-c\right)^2\right]+\left(c-a\right)^3\)

\(=\left(a-c\right)\left(a^2-2ab+b^2-ab+ac+b^2-bc+b^2-2bc+c^2\right)+\left(c-a\right)^3\)

\(=-\left(c-a\right)\left(a^2+3b^2+c^2-3ab+ac-3bc\right)+\left(c-a\right)\left(c^2-2ca+a^2\right)\)

\(=\left(c-a\right)\left(c^2-2ca+a^2-a^2-3b^2-c^2+3ab-ac+3bc\right)\)

\(=\left(c-a\right)\left(3ab+3bc-3b^2-3ac\right)\)

\(=3\left(c-a\right)\left(ab-b^2-ac+bc\right)\)

\(=3\left(c-a\right)\left[b\left(a-b\right)-c\left(a-b\right)\right]\)

\(=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

4 tháng 6 2017

a) ta có: \(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)(1)

              \(-\left(b-a\right)^3=-\left(b^3-3b^2a+3ba^2-a^3\right)\)

                                       \(=a^3-3a^2b+3ab^2-b^3\)(2)

từ (1) và (2) \(\Rightarrow\left(a-b\right)^3=-\left(b-a\right)^3\)

b) ta có: \(\left(a+b\right)^2=a^2+2ab+b^2\)(3)

            \(\left(-a-b^2\right)=\left(-a\right)^2-2\left(-a\right)\cdot b+\left(-b\right)^2\)

                                     \(=a^2+2ab+b^2\)(4)

từ (3) và (4) \(\Rightarrow\left(-a-b\right)^2=\left(a+b\right)^2\)

20 tháng 8 2020

a) VP = -( b3 - 3b2a + 3ba2 - a3 ) = a3 - 3a2b + 3ab2 - b3 = ( a - b )= VT ( đpcm )

b) VT = ( -a )2 - 2(-a)b + b2 = a2 + 2ab + b2 = ( a + b )2 = VP ( đpcm )

20 tháng 8 2020

a) (a-b)3=a3-3a2b+3ab2-b3 (1). -(b-a)3=-(b3-3b2a+3ba2-a3)=-b3+3ab2-3a2b+a3=a3-3a2b+3ab2-b3 (2). từ (1) và (2) => VT=VP => đpcm.        b, (-a-b)2  =. (-a-b)2=[(-a)+(-b)]2=(-a)2+2.(-a).(-b)+(-b)2=a2+2ab+b2=(a+b)2  => VT=VP => đpcm

18 tháng 9 2019

\(a.\left(a-b\right)^3=-\left(b-a\right)^3\)

\(\Leftrightarrow\left(a-b\right)^3=\left(a-b\right)^3\)

Học tốt!

18 tháng 9 2019

a) \(-\left(b-a\right)^3=-\left(b-a\right).\left(b-a\right)^2\)

\(=\left(a-b\right)\left(a-b\right)^2=\left(a-b\right)^3\)

b) \(\left(-a-b\right)^2=\left(-a-b\right)\left(-a-b\right)=\left(a+b\right)\left(a+b\right)=\left(a+b\right)^2\)

17 tháng 8 2015

(a+b)3=(a+b)(a+b)(a+b)

=a(a+b)(a+b)+b(a+b)(a+b)

=(a2+ab)(a+b)+(ab+b2)(a+b)

=(a3+a2b+a2b+ab2)+(a2b+ab2+ab2+b3)

=a3+a2b+a2b+ab2+a2b+ab2+ab2+b3

=a3+a2b+a2b+a2b+ab2+ab2+ab2+b3

=a3+3a2b+3ab2+b3

vậy (a+b)= a3 +3a2b +3ab+ b3 =>dpcm

 

27 tháng 8 2020

\(VT=\left(a-b\right)\left(a^2+ab+b^2\right)+ab\left(a-b\right)\)     

\(=\left(a-b\right)\left(a^2+ab+b^2+ab\right)\)             

\(=\left(a-b\right)\left(a^2+2ab+b^2\right)\)    

\(=\left(a-b\right)\left(a+b\right)^2\)              

\(=VP\left(đpcm\right)\)         

27 tháng 8 2020

Ta có: \(a^3-b^3+ab\left(a-b\right)=\left(a-b\right)\left(a^2+ab+b^2\right)+ab\left(a-b\right)\)

\(=\left(a-b\right)\left(a^2+ab+b^2+ab\right)=\left(a-b\right)\left(a^2+2ab+b^2\right)\)

\(=\left(a-b\right)\left(a+b\right)^2\)( đpcm )

18 tháng 4 2020

Bài làm

a) Đặt a3 + b3 - ab2 - a2b = 0

<=> ( a + b )( a2 + ab + b2 ) - ab( a + b ) = 0

<=> ( a + b )( a2 + ab + b2 - ab ) = 0

<=> ( a + b )( a2 + b2 ) = 0          (1) 

Mà a2 + b2 > 0 

=> ( a + b )( a2 + b2 ) > 0            (2) 

Từ (1) và (2) => ( a + b )( a2 + b2 ) > 0 

Vậy a3 + b3 - ab2 - a2> 0 ( đpcm )

b) Đặt a5 + b5 - a4b - ab4 = 0

<=> ( a5 - a4b ) + ( b5 - ab4 ) = 0

<=> a4( a - b ) + b4( b - a ) = 0

<=> a4( a - b ) - b4( a - b ) = 0 

<=> ( a - b )( a4 - b4 ) = 0              (1) 

Mà a4 - b4 = ( a2 + b2 )( a2 - b2 ) < 0

=> ( a - b )( a4 - b4 ) < 0                (2) 

Từ (1) và (2) => ( a - b )( a4 - b4 ) < 0

Vậy a5 + b5 - a4b - ab4 < 0 ( đpcm )