Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mik tự hào 2 tiếng thằng ngơ nhưng ko ngơ như cậu nghĩ đâu
a) Có: \(\left(a-1\right)^2\ge0,\forall a\)
\(\Leftrightarrow a^2-2a+1\ge0\)
\(\Leftrightarrow a^2+2a+1\ge4a\)
\(\Leftrightarrow\left(a+1\right)^2\ge4a\)
=>đpcm
b) Áp dụng bđt trên ta có:
\(\left(a+1\right)^2\ge4a\) (1)
\(\left(b+1\right)^2\ge4b\) (2)
\(\left(c+1\right)^2\ge4c\) (3)
Nhân vế vs vế (1) ; (2);(3) ta đc:
\(\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge4a\cdot4b\cdot4c=64abc=64\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\)
a)
(a+1)2>=4a
<=> a2 +2a+1>=4a
<=>a2 -2a+1>=0
<=>(a-1)2>=0 với mọi a
Mà các phép biến đổi trên tương đương
=> đpcm
Áp dụng BĐT ở câu a)
\(\left(a+1\right)^2\ge4a\Leftrightarrow\sqrt{\left(a+1\right)^2}\ge\sqrt{4a}\)
Mà a dương nên \(BĐT\Leftrightarrow a+1\ge2\sqrt{a}\)
Chứng minh tương tự: \(b+1\ge2\sqrt{b}\)
\(c+1\ge2\sqrt{c}\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\)(Vì abc = 1)
a) (a-1)^2 >= 0 <=> a^2 - 2a + 1 >= 0 <=> a^2 + 2a + 1 > 4a <=> (a+1)^2 >= 4a
b) Áp dụng bđt trên: \(\left(a+1\right)^2\ge4a\Leftrightarrow\sqrt{\left(a+1\right)^2}\ge2\sqrt{a}\)
mà \(\sqrt{\left(a+1\right)^2}=\left|a+1\right|\) Do a > 0 nên a+1>0. Vậy |a+1| = a + 1
Khi đó: a+1 >= 2 căn a
Tương tự ta có b+1 >= 2 căn b và c+1 >= 2 căn c
=> (a+b)(b+a)(c+1) >= 8 căn abc = 8
9. a) Xét hiệu : (a + 1)\(^2\) – 4a = a\(^2\) + 2a + 1 – 4a = a\(^2\)– 2a + 1 = (a – 1)\(^2\) ≥ 0.
C1
Giả sử căn 7 là số hữu tỉ Vậy căn 7 bằng a/b. Suy ra 7 bằng a bình / b bình. Suy ra a bình bằng 7b bình Suy ra a chia hết cho 7 Gọi a bằng 7k suy ra a bình bằng 7b bình Suy ra (2k) bình bằng 2b bình suy ra 4k bình bằng 2b bình suy ra 2k bình bằng b bình Suy ra ƯCLN(a,b)=2 Trái với đề bài =>căn 7 là số vô tỉ
1)
Giả sử \(\sqrt{7}\) không phải số vô tỉ mà là số hữu tỉ
\(\sqrt{7}=\frac{a}{b}\) ( a;b = 1 ) ( vì căn 7 là số hữu tỉ nên có thể viết dưới dạng a/b )
\(\Rightarrow\frac{a^2}{b^2}=7\)
\(\Rightarrow a^2=7\times b^2\)
Vì a và b là 2 số nguyên tố cùng nhau nên để \(a^2=7\times b^2\) thì \(a^2⋮7\)
Mà 7 là số nguyên tố \(\Rightarrow a⋮7\)\(\Rightarrow a\) có dạng \(a=7k\)
Lại có :\(a^2=7b^2\) \(\Rightarrow49k^2=7b^2\Rightarrow7k^2=b^2\)
Tương tự như trên thì \(b⋮7\)
Do a và b đều chia hết cho 7 nên trái với giả thiết ta đặt ra
\(\Rightarrow\sqrt{7}\) là số vô tỉ (đpcm)
trả lời:
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow2ad.bc-2ad.bc=0\)
\(\Leftrightarrow0=0\left(Đ\right)\)
Vậy đẳng thức đã cho là đúng.
\(bđt\Leftrightarrow a^2+2a+1\ge4a\)
\(\Leftrightarrow a^2-2a+1\ge0\)
\(\Leftrightarrow\left(a-1\right)^2\ge0\)
Dấu "=" khi a = 1