Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{x}{2}-1\right)}}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{cos^2\frac{x}{2}}}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{x}{2}}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{cos^2\frac{x}{4}}}\) (tách tương tự như trên)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{x}{4}}=\sqrt{cos^2\frac{x}{8}}=cos\frac{x}{8}\)
\(\Rightarrow n=8\)
1/ ĐKXĐ: \(sinx\ne0\)
\(\Leftrightarrow a.cos2x+sinx=\frac{cos^2x}{sinx}\)
\(\Leftrightarrow a.cos2x.sinx+sin^2x-cos^2x=0\)
\(\Leftrightarrow a.cos2x.sinx-cos2x=0\)
\(\Leftrightarrow cos2x\left(a.sinx-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}cos2x=0\Rightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\\a.sinx-1=0\left(1\right)\end{matrix}\right.\)
Do \(cos2x=0\) có 4 nghiệm trên khoảng đã cho nên để pt có đúng 4 nghiệm thì (1) vô nghiệm hoặc có nghiệm \(sinx=0\)
Với \(a=0\Rightarrow-1=0\) pt vô nghiệm (thỏa mãn)
Với \(a\ne0\Rightarrow sinx=\frac{1}{a}\Rightarrow\) để pt vô nghiệm thì \(\left|\frac{1}{a}\right|>1\Rightarrow-1< a< 1\)
Vậy \(-1< a< 1\)
2/
\(\Leftrightarrow4cos^3x-3cosx-\left(2cos^2x-1\right)+m.cosx-1=0\)
\(\Leftrightarrow4cos^3x-3cosx-2cos^2x+m.cosx=0\)
\(\Leftrightarrow cosx\left(4cos^2x-2cosx+m-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\4cos^2x-2cosx+m-3=0\left(1\right)\end{matrix}\right.\)
Do \(cosx=0\) có 2 nghiệm thuộc \(\left(-\frac{\pi}{2};2\pi\right)\) , dựa vào đường tròn lượng giác ta thấy để pt có 7 nghiệm khác nhau thuộc khoảng đó thì (1) có 5 nghiệm sao cho \(-1< cosx_1< 0< cosx_2< 1\)
Đặt \(cosx=a\Rightarrow4a^2-2a+m-3=0\) (2)
Ta cần tìm m để (2) có 2 nghiệm thỏa mãn \(-1< a_1< 0< a_2< 1\)
Để (2) có 2 nghiệm trái dấu thì \(4\left(m-3\right)< 0\Rightarrow m< 3\)
Để (2) có 2 nghiệm thỏa mãn \(-1< a_1< a_2< 1\) thì:
\(\left\{{}\begin{matrix}f\left(-1\right)>0\\f\left(1\right)>0\\-1< \frac{S}{2}< 1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-3\\m>1\\-1< \frac{1}{4}< 1\end{matrix}\right.\) \(\Rightarrow m>1\)
Vậy \(1< m< 3\)
\(f\left(x\right)=ax^2+bx+c\) có 2 nghiệm thỏa mãn \(x_1< k< x_2\) khi và chỉ khi \(a.f\left(k\right)< 0\)
Đây là nguyên lý của tam thức bậc 2 từ lớp 10 thì phải
Phương Anh Đỗ
Nhìn đề đoán là \(y=\frac{1}{3}mx^3+mx^2+\left(m+1\right)x+2\)
\(y'=mx^2+2mx+m+1\)
a/ Với \(m=0\) thỏa mãn
Với \(m\ne0\) để \(y'>0;\forall x\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta'=m^2-m\left(m+1\right)< 0\end{matrix}\right.\) \(\Rightarrow m>0\)
b/ Để \(y'=0\) có 2 nghiệm trái dấu
\(\Leftrightarrow m\left(m+1\right)< 0\Rightarrow-1< m< 0\)
c/ \(\left\{{}\begin{matrix}\Delta'=-m>0\\x_1x_2=\frac{c}{a}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\frac{m+1}{m}>0\end{matrix}\right.\) \(\Rightarrow m< -1\)
d/ \(x_1< 1< x_2\)
\(\Rightarrow m.y'\left(1\right)< 0\)
\(\Leftrightarrow m\left(m+2m+m+1\right)< 0\)
\(\Leftrightarrow m\left(4m+1\right)< 0\Rightarrow-\frac{1}{4}< m< 0\)
1) a) cos7x - √3 sin7x = -√2 (a = 1; b = -√3; c = -√2)
=> a^2 + b^2 =4 > c^2 = 2
Chia 2 vế pt (*) cho \(\sqrt{a^2+b^2}=2\) ta đc:
<=> 1/2cos7x - √3/2 sin7x = -√2/2
<=> sin(π/6)cos7x - cos(π/6)sin7x = sin(-π/4)
<=> sin(π/6 - 7x) = sin(-π/4)
<=> π/6 - 7x = -π/4 + k2π
hoặc (k∈Z)
π/6 - 7x = π + π/4 + k2π
<=> x = 5π/84 + k2π/7
hoặc (k∈Z)
x = -13π/84 + k2π/7
1) b) Ta có:
* 2π/5 < x < 6π/7
<=> 2π/5 < 5π/84 + k2π/7 < 6π/7
<=> 143π/420 < k2π/7 < 67π/84
<=> 143/120 < k < 67/24
=> k ϵ {2}
=> x = 53π/84
* 2π/5 < x < 6π/7
<=> 2π/5 < -13π/84 + k2π/7 < 6π/7
<=> 233/120 < k < 85/24
=> k ϵ {2; 3}
=> x = 5π/12 ; x = 59π/84
Vậy có tất cả 3 nghiệm thỏa mãn (2π/5;6π/7) là x = 53π/84; x = 5π/12 ; x = 59π/84.