Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) do x và y tỉ lệ thuận với nhau nên:
(x/y)=(x1/x2)=(y1/y2) (tc 2)
Thay (2/4)= (y1/y2)
(y1/y2)= (1/2)
=> (y1/1)= (y2/2)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
(y1/1)=(y2/2)={(y1+y2)/(1+2)}={12/3}= 4
Từ y1/1=4 => y1=1*4=4
y2/2=4 => y2=2*4=8
Vậy y1=4
y2=8
Nhắc lại một chút :
Nếu hai đại lượng tỉ lệ nghịch với nhau thì :
- Tích hai giá trị tương ứng của chúng luôn không đổi ( = hệ số tỉ lệ )
- Tỉ số hai giá trị bất kì của đại lượng này = nghịch đảo của tỉ số hai giá trị tương ứng của đại lượng kia
Ta có x và y là hai đại lượng tỉ lệ nghịch
x1, x2 là hai giá trị của x
y1, y2 là hai giá trị của y
Tích hai giá trị tương ứng của chúng luôn không đổi
tức là x1y1 = x2y2 ; biết x1 = 6, x2 = -9
=> 6y1 = -9y2 => \(\frac{y_1}{\frac{1}{6}}=\frac{y_2}{-\frac{1}{9}}\)và y1 - y2 = 10
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{y_1}{\frac{1}{6}}=\frac{y_2}{-\frac{1}{9}}=\frac{y_1-y_2}{\frac{1}{6}-\left(-\frac{1}{9}\right)}=\frac{10}{\frac{5}{18}}=36\)
\(\Rightarrow\hept{\begin{cases}y_1=36\cdot\frac{1}{6}=6\\y_2=36\cdot\left(-\frac{1}{9}\right)=-4\end{cases}}\)
vì x y tỉ lệ nghịch nên xy =a nên x1y1=a x2y2=a suy ra y1=a/x1 y2=a/x2
nên a2/x12 +a2/x22 = 52 nên a2/4 +a2/9=13a2/36=52
a2=144 nên a = 12 suy ra y1= 6 ,y2 =4
a) Vì 2 đại lượng x, y tỉ lệ nghịch nên: y1/x2 = y2/x1 => y1/2 = y2/3 = 2y1/4 = 3y2/9 và 2y1 + 3y2 = -26
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
2y1/4 = 3y2/9 = 2y1 + 3y2/4+9 = -26/13 = -2
=> y1/2 = -2 => y1 = -2.2 = -4
y2/3 = -2 => y2 = -2.3 = -6
Câu 2 cũng vậy nhưng ngược lại nha
Lời giải:
Vì $x,y$ là 2 đại lượng tỉ lệ nghịch nên tích $xy=k$ không đổi với $k$ là số thực, hay còn được gọi là hệ số tỉ lệ.
Có:
$x_1y_1=x_2y_2=k$
$\Rightarrow 6y_1=-9y_2$
$\Rightarrow \frac{y_1}{-9}=\frac{y_2}{6}$
Áp dụng TCDTSBN: $\frac{y_1}{-9}=\frac{y_2}{6}=\frac{y_1-y_2}{-9-6}=\frac{10}{-15}=\frac{-2}{3}$
$\Rightarrow y_1=\frac{-2}{3}.(-9)=6; y_2=\frac{-2}{3}.6=-4$