Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bai 1
Bo de : \(\Delta ABC\) trung tuyen AD
\(\Rightarrow S_{ADB}=S_{ADC}\)
cai nay ban tu chung minh nha
Ap dung bo de va bai nay => \(S_{MNPQ}=S_{MQP}+S_{MNP}=\frac{1}{3}S_{MDC}+\frac{1}{3}S_{ABP}\)
ta phai chung minh \(S_{MDC}+S_{ABP}=S_{ABCD}\)
That vay co \(S_{AMP}=S_{AMD},S_{MBP}=S_{MBC}\)
=> \(S_{ABP}+S_{MDC}=S_{ADM}+S_{MDC}+S_{MBC}=S_{ABCD}\)
=> dpcm
Lời giải:
Vì \(AB\parallel DC\) nên áp dụng định lý Thales:
\(\frac{AQ}{QN}=\frac{AB}{DN}=\frac{DC}{DN}=3\)
\(\Rightarrow \frac{AQ}{AN}=\frac{3}{4}\)
Vì \(AD\parallel BC\) nên áp dụng định lý Thales:
\(\frac{AP}{PM}=\frac{AD}{BM}=\frac{BC}{BM}=2\)
\(\Rightarrow \frac{AP}{AM}=\frac{2}{3}\)
Kẻ \(QL, NT\perp AM\) \((L,T\in AM)\)
\(\Rightarrow QL\parallel NT\Rightarrow \frac{QL}{NT}=\frac{AQ}{AN}\) (theo định lý Thales)
Ta có:
\(\frac{S_{APQ}}{S_{AMN}}=\frac{QL.AP}{NT.AM}=\frac{QL}{NT}.\frac{AP}{AM}=\frac{AQ}{AN}.\frac{AP}{AM}=\frac{3}{4}.\frac{2}{3}=\frac{1}{2}\)
(đpcm)
a) Gọi E là trung điểm BK
Chứng minh được QE là đường trung bình \(\Delta\)KBC nên QE//BC => QE _|_ AB (vì BC_|_AB) và \(QE=\frac{1}{2}BC=\frac{1}{2}AD\)
Chứng minh AM=QE và AM//QE => Tứ giác AMQE là hình bình hành
Chứng minh AE//NP//MQ (3)
Xét \(\Delta AQB\)có BK và QE là 2 đường cao của tam giác
=> E là trực tâm tam giác nên AE là đường cao thứ 3 của tam giác AE _|_ BQ
=> BQ _|_ NP
b) Vẽ tia Ax vuông góc với AF. Gọi giao Ax và CD là G
Chứng minh \(\widehat{GAD}=\widehat{BAP}\)(cùng phụ \(\widehat{PAD}\))
=> \(\Delta\)ADG ~ \(\Delta\)ABP (gg) => \(\frac{AP}{AG}=\frac{AB}{AD}=2\Rightarrow AG=\frac{1}{2}AP\)
Ta có \(\Delta\)AGF vuông tại A có AD _|_ GF nên AG.AF=AD.GF(=2SAGF)
=> \(AG^2\cdot AF^2=AD^2\cdot GF^2\left(1\right)\)
Ta chia cả 2 vế củ (1) cho \(AD^2\cdot AG^2\cdot AF^2\)
Mà \(AG^2+AF^2=GF^2\)(định lý Pytago)
\(\Rightarrow\frac{1}{AD^2}=\frac{1}{AG^2}+\frac{1}{AF^2}\Rightarrow\frac{1}{\left(\frac{1}{2}AB\right)^2}=\frac{1}{\left(\frac{1}{2}AP\right)^2}+\frac{1}{AF^2}\)
\(\Rightarrow\frac{4}{AB^2}=\frac{4}{AP^2}+\frac{1}{AF^2}\Rightarrow\frac{1}{AB^2}=\frac{1}{AP^2}+\frac{1}{4AF^2}\)