K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2018

1) Theo tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

2)  Theo tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^{10}}{b^{10}}=\frac{c^{10}}{d^{10}}=\frac{a^{10}+b^{10}}{c^{10}+d^{10}}=\frac{a^{10}-b^{10}}{c^{10}-d^{10}}\Leftrightarrow\frac{a^{10}+b^{10}}{a^{10}-b^{10}}=\frac{c^{10}+d^{10}}{c^{10}-d^{10}}\)

a: \(10^{n+1}=10^n\cdot10\)

b: \(2^{n+3}+2^{n+1}-2^{n+1}+2^n\)

\(=2^n\cdot8+2^n=9\cdot2^n\)

c: \(90\cdot10^k-10^{k+2}+10^{k+1}\)

\(=90\cdot10^k+10^k\cdot10-10^k\cdot100=0\)

23 tháng 5 2020

\(a, 10^{n+1} -6.10 ^n\)

= \(10^n (10-6)=4.10^n\)

\(B/ 2^{n+3} + 2^{n+2} - 2^{n+1} +2^n\)

= \(2^n (2^3+2^2-2+1)\)

= \(2^n (8+4-2+1)\)

\(= 11.2^n\)

\(C/ 90.10^k - 10^{k +2} + 10^{k +1} \)

\(= 10^k(90-2+1)\)

= \(89.10^k\)

\(D/ 2,5 . 5^{n-3} . 10+5^n -6 .5^{n-1}\)

\(= 5.5.5^{n-3} +5^n-6.5^{n-1}\)

= \(5^2 .5^{n-3}+5^n-6.5^{n-1} \)

= \(5^{n-3+2}+5^n -6.5^{n-1}\)

\(= 5^{n-1}(1+5-6)\)

= \(5^{n-1}.0\)

= 0

24 tháng 5 2020

cảm ơn ạ