Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C S N I M O K F A B D H
haizzz , vì mới lớp 8 nên mình chỉ làm được đến câu c, thôi , bạn thông cảm
a, Xét tam giác ABC vuông tại A và HA = HD
- Có \(\widehat{BAC}\)là góc nội tiếp đường tròn O chắn cung BC
- Mà BC là đường kính O
=> \(\widehat{BAC}=90^o\)
=> \(\Delta ABC\perp A\)
Xét \(\Delta OAD\)cân tại O ( Vì OA = OD do A , D cung thuộc O )
- Có AH là đường cao
=> OH là đường trung tuyến \(\Delta OAD\)
=> H là trug điểm AD
=> HA = HD
b, MN // SC , SC tiếp tuyến của (O)
Xét tam giác OSC có : M là trung điểm của OC
N là trung điểm của OS
=> MN là đường TB của \(\Delta OSC\)
=> MN // SC
Mà \(MN\perp OC\left(gt\right)\)
\(\Rightarrow OC\perp SC\)tại S
- Xét đường tròn O có CO là bán kính ( vì \(C\in\left(O\right)\)
\(CO\perp SC\)tại C
=> SC là tiếp tuyến của đường tròn (O)
c, BH . HC = AF . AK
Xét \(\Delta ABC\perp A\)có :
AH là đường cao
=> AH2 = BH . HC
Xét đường tròn đường kính AH có F thuộc đường tròn
\(\Rightarrow\widehat{AFH}=90^o\)
\(\Rightarrow HF\perp AK\)tại F
Xét tam giác AHK vuông tại H , ta có :
HF là đường cao
=> AH2 = AF . AK
=> BH . HC = AF . AK ( = AH2 )
bạn tự vẽ hình nha
a)Xét tứ giác ABEF có
góc ABE=90 độ( góc nội tiếp chắn nửa dường tròn)
và góc AFE=90 độ (EF vuông góc AD tại F)
=> góc ABE + góc AFE =180 độ
=> tứ giác ABEF nội tiếp dường tròn đường kính AE
b)Ta có : góc CBD=góc CAD ( góc nội tiếp cùng chắn cung CD của (O))
và góc CAD =góc FBD (góc nội tiếp chắn cung EF của đường tròn ngoại tiếp tứ giác ABEF)
=>góc CBD=góc FBD (=góc CAD)
=>BD là tia phân giác của góc CBF
c)Xét tứ giác CEFD có:
góc DCA=90 độ (góc nội tiếp chắn nửa đường tròn)
và góc EFD=90 độ (EF vuông góc AD tại F)
=> góc DCA+góc EFD=180 độ
=> tứ giác CEFD nội tiếp dường tròn đường kính ED)
Ta có tam giác ABE vuông tại B có dường trung tuyến BM (M là trung diểm của AE)
=>BM=1/2. AE= AM=ME =>tam giác ABM cân tại M => góc ABM= góc BAM
mà góc ABM +góc MBF+góc FBE=90 độ
và góc FBE=góc CAD (cmt)
=>góc MBF+ góc CAD+ góc BAM =90 độ
mà góc ADB+ góc CAD+góc BAM =90 độ(góc BAD=góc BAM+goc1CAD)
=>góc MBF=góc ADB
mà góc ADB = góc FCM ( góc nội tiếp cùng chắn cung EF của đường tròn ngoại tiếp tứ giác CEFD)
=>góc MBF= góc FCM (=góc ADB)
=>tứ giác BMFC nội tiếp đường tròn
#B
a) Ta có: ^ABD = 90o ( góc nội tiếp chắn cung AD ( nửa đường tròn ) )
và ^AFE = 90o ( EF vuông AD)
=> ^ABD + ^AFE = 180o
=> ABEF nội tiếp
Chứng minh tương tự với DCEF
b) ABCD nội tiếp => ^ACB = ^ADB ( cùng chắn cung AB )
DCEF nội tiếp => ^ECF = ^EDF ( cùng chắn cung EF ) => ^ACF = ^ADB
=> ^ACB = ^ACF
=> CA là phân giác ^BCF
a) Xét tam giác DFB có:
\(\hept{\begin{cases}\widehat{D}=90^o\left(DE\perp AB\right)\\\widehat{C}=90^o\end{cases}}\)
=> Tứ giác DFBC nội tiếp
b) Xét tam giác BFG có \(\hept{\begin{cases}\widehat{FBG}=\frac{1}{2}\widebat{AG}\\\widehat{BGF}=\frac{1}{2}\widebat{AE}\end{cases}}\)
Mà cung AB= cùng BG
=> BF=BG
A B C D E F
b) \(\widehat{BCE}=\widehat{ACF}\leftarrow\orbr{\begin{cases}\widehat{BCE}=\widehat{BDA}\left(ABCDnt\right)\\\widehat{ACF}=\widehat{BDA}\left(ECDFnt\right)\end{cases}}\)
giúp em với
chúc bạn học tốt