K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2018

Gọi O là giao điểm của AH và IK, N là giao điểm của AM và IK. Ta có 

MAK = MCK, OKA = OAK nên

MAK + OKA = MCK + OAK = 90 độ

Do đó AM vuông góc IK

18 tháng 11 2018

bạn ơi bạn làm như giải ý 

2 tháng 12 2015

I là hình chiếu của H trên AB => HI vuông góc vs AB => góc AIH = 900
tương tự ta có: K là hình chiếu của H trên AC => HK vuông góc vs AC => góc AKH = 900
Tứ giác AIHK  là hình chữ nhật vì có BAC=ADH=HKA=900
=>IO=OA(cho O là giao điểm giữa 2 đường chéo AH và IK)
=>góc IAO=góc AIO(1)
Có AM là đường trung tuyến ứng vs cạnh huyền(M là trung điểm BC) của tam giác vuông ABC
 => tam giác ACM cân tại M => góc MAC = góc MCA  (2)
Mặt khác góc MCA= góc IAO vì cùng phụ vs AH.(3)
Từ (1),(2) và (3) => góc IAO= góc MAC= góc MCA
Tam giác AIK vuông tại A nên góc AKI+ góc AIK=900  =>góc MAK + góc IKA =900
Gọi giao điểm của AM vs IK là F thì từ tam giác AKF ta có  góc AFK =900 hay AM vuông góc vs IK

tự vẽ hình nhé ^,^
 

20 tháng 9 2017

câu 1

gọi góc DAH = góc HAO =góc OAB = x
Xét tam giác OAD cân tại A(....)
=> góc ADH = 90 độ - x (1)
=> góc DOC = 180 độ - 2x (góc ngoài)
_góc ACD=x ( soletrong ...)
Xét tam giác ODC có
góc ODC = 180 độ - góc ACD - góc DOC
=180 độ - 180 độ + 2x -x
= x
=> góc ODC = x (2)
từ (1) và (2) => góc ADC = 90 độ - x + x =90 độ
=> H.B.Hành có 1 góc vg^ => đó là H.C.Nhật (dpcm)

26 tháng 11 2017

Câu 2

undefinedundefined

21 tháng 12 2023

Sửa đề: D,E lần lượt là hình chiếu của H trên AB,AC

a: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

b: Ta có: ADHE là hình chữ nhật

=>\(\widehat{AED}=\widehat{AHD}\)

mà \(\widehat{AHD}=\widehat{B}\left(=90^0-\widehat{HAB}\right)\)

nên \(\widehat{AED}=\widehat{B}\)

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MB=MC

Ta có: MA=MC

=>ΔMAC cân tại M

=>\(\widehat{MAC}=\widehat{MCA}\)

Ta có: \(\widehat{MAC}+\widehat{AED}\)

\(=\widehat{MCA}+\widehat{B}\)

\(=90^0\)

=>AM\(\perp\)DE

c: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>\(AH=\dfrac{48}{10}=4,8\left(cm\right)\)

Ta có: ADHE là hình chữ nhật

=>DE=AH

mà AH=4,8cm

nên DE=4,8cm