Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tam giác ABD vuông và tam giác EBD vuông đều có cạnh BD
Suy ra góc ABD = góc EBD
Vậy tam giác ABD = tam giác EBD
b) Ta có: AB=EB ( tam giác ABD = tam giác EBD )
Suy ra tam giác ABE cân tại B
Tam giác ABE cân tại B có góc EBA =60 độ
Suy ra tam giác ABE là tam giác đều
c) Tam giác ABC có góc CAB = 90 độ, góc CBA = 60 độ
Suy ra ACB = 30 độ
Suy ra tam giác ABC là nửa tam giác đều
Suy ra AB = 1/2 BC
Suy ra BC = 2AB = 2 . 5 = 10 cm
B A C 5 30 30 D E Vẽ xấu nhưng xem tạm thôi nhé!
a)Xét \(\Delta\)ABD (\(\widehat{A}=90^0\) )và \(\Delta\)EBD (\(\widehat{E}=90^0\))
Ta có:BD là cạnh chung (1)
\(\widehat{ABD}=\widehat{EBD}\) (gt) (2)
Từ (1) và (2) ==>\(\Delta ABD=\Delta EBD\) (CH+GN)
b)..............hình như tôi ko bt nx ^^
Hình bn Hoa vẽ rồi !! mk k vẽ lại nữa
a ) Phương Hoa lm rồi
b) Vì tam giác ABD = tam giác EBD ( câu a )
=> AB = EB ( cặp cạnh tượng ứng )
=> tam giác ABE cân (1)
Mà góc ABE = 60 độ (2)
Từ (1) và (2) => tam giác ABE đều ( điều phải chứng minh )
c) Xét tam giác ABK và tam giác EBK có :
BD : cạnh chung
AB = BE ( vì tam giác ABE đều )
góc ABK = góc EBK = 30 độ ( vì BK là phân giác )
=> tam giác ABK = tam giác EBK ( c-g-c )
=> AK = EK ( cặp cạnh tương ứng )
Mà tam giác ABE đều => AB = EB = AE
=> AB = EB = AE = 5cm
mà AK + EK = AE
=> AK = AE = 2,5 cm
Mà AK = EC
=> AK = EC = 2,5cm
Vì BE + CE = BC
=> 5 + 2,5 = BC
=> BC = 7,5 cm
Chúc bn học tốt !!!
Mình không biết có đúng hay không nha?!
b) Ta có:AD=DE(tam giác ... = tam giác...)
a) tam giác ABD vuông và tam giác EBD vuông có BD=BD,góc ABD=góc EBD
=> tam giác ABD=tam giác EBD (ch-gn)
b) ta có AB=EB (tam giác ABD=tam giác EBD)
=> tam giác ABE cân tại B
tam giác ABE cân tại B có góc EBA=60 độ
=> tam giác ABE đều
c) tam giác ABC có góc CAB=90 độ,góc CBA=60 độ
=> góc ACB=30 độ
=> tam giác ABC là nửa tam giác đều
=> AB =1/2 BC=> BC=2AB=2.5=10 cm
a) Tam giác ABD (góc A=90 độ) và tam giác BDE (góc E=90 độ) có:
góc ABD = góc DBE (gt)
BD chung
tam giac ABD= tam giác BDE(cạnh huyền-góc nhọn)
b) Ta có:AD=DE(tam giác ... = tam giác...)
tam giác ADE cân
Ta có: góc D =120 độ ( góc D= 180 độ -(góc A + góc B)=60 độ...)
góc A=góc E=(180 độ - góc D)/2=30 độ
Góc BEA = 90 độ -30 độ = 60 độ => tam giác BEA đều.
c.xét tam giác ABC có : cosABC=AB/BC
=> BC=AB/cosABC => BC=5/cos60=? ( tại mình ko có máy tính
a) Tam giác ABD vuông và tam giác EBD vuông đều có cạnh BD
Suy ra góc ABD = góc EBD
Vậy tam giác ABD = tam giác EBD
b) Ta có: AB=EB ( tam giác ABD = tam giác EBD )
Suy ra tam giác ABE cân tại B
Tam giác ABE cân tại B có góc EBA =60 độ
Suy ra tam giác ABE là tam giác đều
c) Tam giác ABC có góc CAB = 90 độ, góc CBA = 60 độ
Suy ra ACB = 30 độ
Suy ra tam giác ABC là nửa tam giác đều
Suy ra AB = 1/2 BC
Suy ra BC = 2AB = 2 . 5 = 10 cm
chúc bạn học tốt!
A B C D E
a, xét tam giác ABD và tam giác EBD có : BD chung
^ABD = ^EBD do BD là pg của ^ABC (gt)
^BAD = ^BED = 90
=> tam giác ABD = tam giác EBD (ch-gn)
b, tam giác ABD = tam giác EBD (Câu a)
=> AB = BE (Đn)
=> tam giác ABE cân tại B (đn)
mà ^ABE = 60 (gt)
=> tam giác ABE đều (dh)
c, tam giác ABC vuông tại A (gt) => ^ACB = 90 - ^ABC (đl)
^ABC = 60 (Gt)
=> ^ACB = 30 mà tam giác ABC vuông tại A (gt)
=> AB = BC/2
AB = 5 cm (GT)
=> BC = 10
tam giác ABC vuông tại A (gt) => AB^2 + AC^2 = BC^2
AB = 5; BC = 10
=> AC^2 = 10^2 - 5^2
=> AC^2 = 75
=> AC = \(\sqrt{75}\) do AC > 0
A B C D 1 2 E
A)XÉT \(\Delta ABD\)VUÔNG VÀ \(\Delta EBD\)VUÔNG CÓ
\(\widehat{B_1}=\widehat{B_2}\left(GT\right)\)
BD LÀ CẠNH CHUNG
\(\Rightarrow\Delta ABD=\Delta EBD\left(CH-GN\right)\)
B) TA CÓ \(\Delta ABD=\Delta EBD\left(CMT\right)\)
\(\Rightarrow AB=EB\)(HAI CẠNH TƯƠNG ỨNG)
NÊN \(\Delta ABE\)CÂN TẠI B
C) XÉT \(\Delta ABC\)VUÔNG TẠI A CÓ
\(\widehat{A}+\widehat{B}+\widehat{C}=180\)
THAY\(\widehat{90}+\widehat{60}+\widehat{C}=180\)
\(\Rightarrow\widehat{C}=30\)
MÀ TRONG TAM GIÁC VUÔNG , CẠNH ĐỐI DIỆN VỚI GÓC 30 ĐỘ BẰNG NỬA CẠNH HUYỀN(Đ/L)
\(\Rightarrow2AB=BC\)
THAY\(2.5=BC=10\left(cm\right)\)
XÉT \(\Delta ABC\)VUÔNG TẠI A CÓ
\(BC^2=AB^2+AC^2\left(Đ/LPY-TA-GO\right)\)
THAY\(10^2=5^2+AC^2\)
\(100=25+AC^2\)
\(\Rightarrow AC^2=100-25\)
\(\Rightarrow AC^2=75\)
\(\Rightarrow AC=\sqrt{75}=5\sqrt{3}\)