Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Diện tích tam giác ABC là:
6.8:2=24 (cm2)
Áp dụng định lí Py-ta-go cho tam giác ABC, ta có:
AB2+AC2=BC2
=>62+82=BC2=>36+64=BC2=>BC=10 (cm)
Đường cao AH dài là:
24.2:10=4,8 (cm)
Áp dụng định lí Py-ta-go cho tam giác ABH, ta có:
AH2+BH2=AB2
=>4,82+BH2=36
=>23,04+BH2=36
=>BH2=12,96=>BH=3,6 (cm)
Độ dài CH là:
10-3,6=6,4 (cm)
Đáp số: AH: 4,8 cm; BH: 3,6 cm; CH: 6,4 cm; BC: 10 cm
\(\text{Áp dụng định lý Pytago ta có:}\)
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC^2=6^2+8^2\)
\(\Rightarrow BC^2=100\)
\(\Rightarrow BC=10\left(\text{Vì BC}>0\right)\)
\(S_{\Delta ABC}\text{ là}:\)
\(\frac{6.8}{2}=24\)
\(\text{Vì AH là đường cao hạ từ đỉnh A và BC là đáy tương ứng với đường cao AH nên}\)
\(S_{\Delta ABC}=\frac{BC.AH}{2}=\frac{10.AH}{2}=24\)
\(\Rightarrow AH=24:5=4,8\)
\(\text{Áp dụng định lý Pytago ta có:}\)
\(AB^2=AH^2+BH^2\)
\(\Rightarrow6^2=4,8^2+BH^2\)
\(BH^2=12.96\)
\(BH=3,6\)
\(\text{CH thì tính tương tự như BH nha}\)
CM:DH=DE
Vì AH là đường cao=>góc AHC=90o
Vì DE vuông góc với AC=>góc AEP=90o
AHC=AEP(=90o)
Xét tam giác ADE và tam giác ADH có:
AHC=AEP(=90o )
AD:cạnh chung
EAD=HAD(AD là phân giác của tam giác AHC)
=>tam giác ADE=tam giác ADH(cạnh huyền-góc nhọn)
=>DE=DH(2 cạnh tương ứng)
a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có
AD chung
góc HAD=góc EAD
=>ΔAHD=ΔAED
=>DH=DE
b: Xét ΔAEK vuôngtại E và ΔAHC vuông tại H có
AE=AH
góc EAK chung
=>ΔAEK=ΔAHC
=>AK=AC
=>ΔAKC cân tại A
c: Xét ΔKHE và ΔCEH có
KH=CE
HE chung
KE=CH
=>ΔKHE=ΔCEH
d: CB=8+32=40cm
\(AC=\sqrt{32\cdot40}=\sqrt{1280}=16\sqrt{5}\left(cm\right)\)
a: BC=căn 6^2+8^2=10cm
b: Hình chiếu của AB là HB
Hình chiếu của AC là HC
a, \(\Delta\) HBA và \(\Delta\) ABC:
^B - chung
^H = ^A= 900 => tg HBA đồng dạng ABC.
b, Vì tam giác BHA đồng dạng tg ABC:
=> \(\frac{AB}{HB}=\frac{BC}{AB}\Rightarrowđpcm\)
c, ADTC tia phân giác:
\(\Rightarrow\frac{AB}{AC}=\frac{BI}{IC}\Rightarrow\frac{BI}{AB}=\frac{IC}{AC}\)
ADTC dãy tỉ số bằng nhau
\(\frac{BI}{AB}=\frac{IC}{AC}=\frac{BI+IC}{AB+AC}=\frac{BC}{AB+AC}=\frac{10}{6}+8=\frac{5}{7}\)
\(\Leftrightarrow\hept{\begin{cases}BI=\frac{5}{7}.6=4,3\\IC=\frac{5}{7}.8=5,7\end{cases}}\)
BC=10cm
=>AH=4,8cm