Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha
AED + DEC = 180
mà DEC = AEF (tam giác AFE = tam giác DCE)
=> AED + AEF = 180
=> EF và ED là 2 tia đối
=> D , E , F thẳng hàng
A B C D O E F
a) Ta có BD = BA \(\Rightarrow\)tam giác ABD cân tại B
Gọi giao điểm của AD với BE là O
Xét tam giác ABO và tam giác DBO có :
AB = BD
\(\widehat{ABO}=\widehat{DBO}\)( BE là phân giác góc B )
Chung cạnh BO
\(\Rightarrow\) tam giác ABO = tam giác DBO ( c-g-c )
\(\Rightarrow\widehat{AOB}=\widehat{DOB}\)
Mà \(\widehat{AOB}+\widehat{BOD}=180^o\)( kề bù )
\(\Rightarrow AD\perp BE\)
b) Xét tam giác BAE và tam giác BDE có :
AB = BD
\(\widehat{ABE}=\widehat{DBE}\)
Chung BE
\(\Rightarrow\) tam giác BAE = tam giác BDE ( c-g-c )
\(\Rightarrow EA=ED\)
c) ta có tam giác AEB = tam giác DEB ( câu b )
\(\Rightarrow\widehat{EAB}=\widehat{EDB}=90^o\)
Mà \(\widehat{EDB}+\widehat{EDC}=180^o\)
\(\Rightarrow\widehat{EDC}=\widehat{EDB}=90^o\)
Xét tam giác AFE và tam giác DCE có :
\(\widehat{EAF}=\widehat{EDC}\left(=90^o\right)\)
AF = DC
AE = ED ( câu b )
\(\Rightarrow\)tam giác AFE = tam giác DCE ( c - g - c )
\(\Rightarrow EF=EC\)
d) Ta có AB = BD
AF = DC
\(\Rightarrow AB+AF=BD+DC\)
\(\Leftrightarrow BF=BC\)
\(\Rightarrow\)Tam giác BFC cân tại B
Mà BE là phân giác góc FBC ( là đỉnh tam giác cân FBC )
\(\Rightarrow\)BE là đường cao tam giác FBC
Lại có \(CA\perp BF\)
CA và BE cắt nhau tại E
\(\Rightarrow\)E là trực tâm tam giác FBC
Mà \(\widehat{EDC}=\widehat{EDB}=90^o\Rightarrow ED\perp BC\)
\(\Rightarrow\)D ; E ; F thẳng hàng
Xét ΔABDΔABD và ΔEBDΔEBD, ta có:
AB=BE ( gt)
ABDˆ=EBDˆABD^=EBD^ ( Vì BD là tia phân giác của góc B)
BD chung
⇒ΔABD=ΔEBD⇒ΔABD=ΔEBD (c-g-c)
A B C D E F
a/ Xét \(\Delta ABD\)và \(\Delta EBD\)
BA=BE (gt); BD chung
\(\widehat{ABD}=\widehat{EBD}\)(gt)
\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\)
b/
\(\Delta ABD=\Delta EBD\left(cmt\right)\Rightarrow\widehat{BAD}=\widehat{BED}=90^o\Rightarrow DE\perp BC\)
c/
Ta có
BE=BA (gt); AF=CE (gt)
=> BE+CE=BA+AF => BC=BF => tg BCF cân tại B
Mà BD là phân giác \(\widehat{ABC}\)
\(\Rightarrow BD\perp CF\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)
Mà \(CA\perp BF\)
=> D là trực tâm của \(\Delta BCF\Rightarrow FD\perp BC\) mà \(DE\perp BC\) => FD trùng DE (từ 1 điểm ngoài đường thẳng chỉ dựng được duy nhất 1 đường thẳng vuông góc với đường thẳng đã cho) => E, D, F thẳng hàng
hình vào tcn cho mình thay G là điểm D vì mình nhầm trọng tâm của tam giác
a) Xét tam giác ABD và tam giác EBD có:
AB=BE (gt)
^ABD=^EBD (^ABD là tia phân giác)
BD chung
=> tam giác ABD = tam giác EBD ( c.g.c )
b) Vì ABC là tam giác vuông tại A
=> tam giác ABD là tam giác vuông tại A
Mà: tam giác ABD = tam giác EBD ( c.g.c )
=> ^BED=^BAD= 90o
=> DE_|_BC (đpcm)
c) Nối F và C lại với nhau
Vì: FA=FB ( gt)
Mà CA_|_FB ( tam giác ABC _|_ tại A)
=> CA là đg trung trực của tam giác ABC
=> CA là đg trung tuyến của tam giác ABC
Mà tia phân giác ABC cắt AC tại D
=> D là trọng tâm của tam giác ABC
=> D,E,F thằng hàng (đpcm)
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
Câu a,b: dễ bạn tự làm nhé
c) Ta có tam giác BAE = tam giác BDE ( cm b)
=> góc CAB = góc BDF (2 góc t/ư)
Mà góc CAB = 90*( vì tam giác ABC vuông tại A)
=> góc BDF =90*
\(\Rightarrow\hept{\begin{cases}ED\perp BC\\FD\perp BC\end{cases}}\)(ĐN)
=> D, E, F thẳng hàng ( cùng \(\perp\)BC)