Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: XétΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
Hình vẽ:
a, \(\Delta AHD\) vuông tại \(H\), \(HD\perp AB\Rightarrow AD.AB=AH^2\)
\(\Delta AHC\) vuông tại \(H\), \(HE\perp AC\Rightarrow AE.AC=AH^2\)
\(\Rightarrow AD.AB=AE.AC\)
b, Ta cần chứng minh \(NE\perp DE;MD\perp DE\)
Ta có \(\Delta AHE\sim\Delta ACH\left(g-g\right)\)
\(\Rightarrow\widehat{AHE}=\widehat{ACH}\)
Vì ADHE là hình chữ nhật nên \(\widehat{ADE}=\widehat{AHE}\)
\(\Rightarrow\widehat{ADE}=\widehat{ACH}\)
Lại có \(\widehat{MDB}=\widehat{MBD}\Rightarrow\widehat{ADE}+\widehat{MDB}=90^o\)
\(\Rightarrow\widehat{MDE}=90^o\Rightarrow MD\perp DE\)
Tương tự \(NE\perp DE\)
\(\Rightarrowđpcm\)
Hình vẽ:
a, \(\Delta AHD\) vuông tại \(H\), \(HD\perp AB\Rightarrow AD.AB=AH^2\)
\(\Delta AHC\) vuông tại \(H\), \(HE\perp AC\Rightarrow AE.AC=AH^2\)
\(\Rightarrow AD.AB=AE.AC\)
b, Ta cần chứng minh \(NE\perp DE;MD\perp DE\)
Ta có \(\Delta AHE\sim\Delta ACH\left(g-g\right)\)
\(\Rightarrow\widehat{AHE}=\widehat{ACH}\)
Vì ADHE là hình chữ nhật nên \(\widehat{ADE}=\widehat{AHE}\)
\(\Rightarrow\widehat{ADE}=\widehat{ACH}\)
Lại có \(\widehat{MDB}=\widehat{MBD}\Rightarrow\widehat{ADE}+\widehat{MDB}=90^o\)
\(\Rightarrow\widehat{MDE}=90^o\Rightarrow MD\perp DE\)
Tương tự \(NE\perp DE\)
\(\Rightarrowđpcm\)
c, Q là giao điểm của DE và AH (Ghi đúng đề)
\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
Vì \(MNED\) là hình thang nên
\(PQ=\dfrac{1}{2}\left(MD+NE\right)=\dfrac{1}{4}\left(BH+CH\right)=\dfrac{1}{4}BC=2,5\left(cm\right)\)
P/s: Đăng 1 lần thôi.
a: AD*AB=AH^2
AE*AC=AH^2
Do đó: AD*AB=AE*AC
b: góc NED=góc NEH+góc DEH
=góc CHE+góc HAB
=góc CBA+góc HAB
=90 độ
=>ED là tiếp tuyến của (N)
góc EDM=góc EDH+góc MDH
=góc HAC+góc MHB
=góc hAC+góc BCA
=90 độ
=>ED là tiếp tuyến của (M)
a) Xét tứ giác ADHE có: \(\widehat{DAE}=\widehat{AEH}=\widehat{ADH}=90^o\)
=> ADHE là hình chữ nhật
=> \(\widehat{DAH}=\widehat{DEH}\)
Ta lại có: \(\left\{{}\begin{matrix}\widehat{AED}+\widehat{DEH}=90^o\\\widehat{ABC}+\widehat{DAH}=90^o\end{matrix}\right.\)
Do đó: \(\widehat{AED}=\widehat{ABC}\)
Xét tam giác AED và ABC
Ta có: Góc A chung
\(\widehat{AED}=\widehat{ABC}\) (cmt)
=> Tam giác AED và ABC đồng dạng (g-g)
=> \(\frac{AE}{AB}=\frac{AD}{AC}\Rightarrow AD.AB=AE.AC\) (Đpcm)
b) Ghi rõ lại đề cần chứng minh
c) Xét tam giác HEC vuông tại E có đường trung tuyến EN ( HN = CN )
=> EN = CN = HN nên tam giác ENC cân tại N
=> Góc NEC = Góc NCE hay góc NEC = góc ACB
Mà góc ACB = góc DAH ( cùng phụ với góc HAC )
Do đó: Góc NEC = Góc DAH, Góc DAH = Góc DEH ( vì ADHE là hình chữ nhật nên là tứ giác nội tiếp )
=> Góc NEC = Góc DEH => Góc NEC + góc HEN = Góc DEH + góc HEN
=> Góc DEN = 90 độ
CMTT: Góc MDE = 90 độ
=> DMNE là hình thang vuông
Xét hình thang vuông DMNE có: DQ = DE ( do hình chữ nhật ADEH )
MP = PN ( do P là trung điểm của MN )
=> QP là đường trung bình của hình thang vuông DMNE
=> \(QP=\frac{\left(DM+EN\right)}{2}\)
Từ giả thuyết AB = 6, AC = 8, áp dụng định lý Pitago và hệ thức lượng trong tam giác vuông ta được: BC = 10; AH = 4,8 ; BH = 3,6; CH = 6,4
Vì tam giác BDM, HEC vuông lần lượt có các đường trung tuyến DM, EN
Nên: DM = 1/2BH = 1/2.3,6 = 1,8
EN = 1/2CH=1/2.6,4 = 3,2
Do đó: PQ = ( 1,8 + 3,2)/2 = 2,5 (cm)
Câu b chứng minh DE là tiếp tuyến chung của (M;MD) và (N;NE) thì áp dụng phần đầu của câu c là chứng minh vuông.
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)