Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
\(\Leftrightarrow AB^2+AC^2-BC^2=2\cdot AB\cdot AC\cdot cosA\)
\(\Leftrightarrow BC^2=AB^2+AC^2-2\cdot AB\cdot AC\cdot cosA\)
b:
bài 1 : (1) ta có : \(AB^2+CH^2=AH^2+BH^2+AC^2-AH^2\)
\(=BH^2+AC^2\left(đpcm\right)\)
(2) a) ta có : \(AB^2+AC^2=2AH^2+BH^2+CH^2\)
\(=2AM^2-2HM^2+\left(BM-HM\right)^2+\left(CM+HM\right)^2\)
\(=2AM^2-2HM^2+BM^2-2BM.HM+HM^2+CM^2+2CM.HM+HM^2\)
\(=2AM^2+BC^2-2BM.CM=2AM^2+BC^2-\dfrac{2BC^2}{4}\)
\(=2AM^2+\dfrac{BC^2}{2}\left(đpcm\right)\)
b) ta có : \(AC^2-AB^2=AH^2+HC^2-BH^2-AH^2\)
\(=HC^2-BH^2=\left(CM+HM\right)^2-\left(BM-HM\right)^2\)
\(=CM^2+2CM.HM+HM^2-BM^2+2BM.HM-HM^2\)
\(=2HM\left(CM+BM\right)=2HM.BC\left(đpcm\right)\)
bài 2 : (1) ta có : \(\dfrac{EB}{FC}=\dfrac{BH^2}{AB}:\dfrac{HC^2}{AC}=\dfrac{BH^2.AC}{AB.HC^2}\)
\(=\dfrac{\dfrac{AB^4}{BC^2}.AC}{AB.\dfrac{AC^4}{BC^2}}=\left(\dfrac{AB}{AC}\right)^3\left(đpcm\right)\)
(2) ta có : \(BC.BE.CF=\dfrac{BH^2.HC^2}{AB.AC}.BC=\dfrac{BH^2.HC^2}{AH}\)
\(=\dfrac{\dfrac{AB^4.AC^4}{BC^4}}{AH}=\dfrac{BC^4.AH^4}{BC^4.AH}=AH^3\left(đpcm\right)\)
e làm đc ko mà xúc phạm ng ta như vậy,ng ta lớn hơn e tận mấy tuổi luôn đó,mới vào mà còn làm phách à!điểm của e còn chưa bằng 1 góc của ng ta mà ngồi đó nói này nói nọ!
kẻ đường cao BH
BC2=BH2+HC2(pytago)
BH=AB.sin60; HC=AC-AH=AC-ABcos60 thay vào trên
BC2=(AB.sin60)2+(AC-ABcos60)2=AB2.sin260+AC2-2AB.ACcos60+AB2.cos260=AB2+AC2-2AB.AC.\(\frac{1}{2}\)=AB2+AC2-AB.AC
A B H C
kẻ BH _|_ AC (H thuộc AC)
xét tam giác ABH có : góc A + góc ABH + góc AHB = 180 (ĐL)
Có : góc A = 60 (gt)
góc AHB = 90 do BH _|_ AC (Cách vẽ)
=> góc ABH = 180 - 90 - 60 = 30
xét tam giác ABH vuông tại H có góc ABH = 30
=> AH = 1/2.AB (đl)
=> AB = 2AH (1)
xét tam giác ABH vuông tại H
=> AB^2 = AH^2 + BH^2 (Đl PTG)
=> BH^2 = AB^2 - AH^2 (2)
xét tam giác BHC vuông tại H :
=> BC^2 = HC^2 + BH^2 (đl PTG)
=> BC^2 = BH^2 + (AC - AH)^2
=> BC^2 = BH^2 + AC^2 - 2AH.AC + AH^2
thay (1)(2) vào ta được :
BC^2 = (AB^2 - AH^2) + AC^2 - AB.AC + AH^2
=> BC^2 = AB^2 - AH^2+ AC^2 - AB.AC + AH^2
=> BC^2 = AB^2 + AC^2 - AB.AC
a) ta có : \(AB^2+AC^2=2AH^2+BH^2+CH^2\)
\(=2AM^2-2HM^2+\left(BM-HM\right)^2+\left(CM+HM\right)^2\)
\(=2AM^2-2HM^2+BM^2-2BM.HM+HM^2+CM^2+2CM.HM+HM^2\)
\(=2AM^2+BC^2-2BM.CM=2AM^2+BC^2-\dfrac{2BC^2}{4}\)
\(=2AM^2+\dfrac{BC^2}{2}\left(đpcm\right)\)
b) ta có : \(AC^2-AB^2=AH^2+HC^2-BH^2-AH^2\)
\(=HC^2-BH^2=\left(CM+HM\right)^2-\left(BM-HM\right)^2\)
\(=CM^2+2CM.HM+HM^2-BM^2+2BM.HM-HM^2\)
\(=2HM\left(CM+BM\right)=2HM.BC\left(đpcm\right)\)