Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ABD và tam giác ACD là tam giác caan ta có :
AB=AC( gt)
Góc BAD= góc CAD( tia phân giác AD của góc A)
AD là cạnh chung
Suy ra tam giác ABD= tam giác ACD(c-g-c)
CÒN CÂU B và D để sau nhé đang bận***
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a/ tgiác ACD và tgiác AME là hai tgiác vuông tại A.
AD = AE (gt)
góc(ADC) = góc (AEM) (góc có cạnh tương ứng vuông góc)
=> tgiácACD = tgiácAME (g.c.g)
b/ ta có: AG//EH (cùng vuông góc với CD)
=> AG // IH
mà gt => AI // GH
vậy AGHI là hình bình hành
=>AG = IH.
mặt khác theo cm trên ta có: tgiác ACD = tgiác AME
=> AM = AC = AB
=> A là trung điểm BM, mà AI // BC
=> AI là đường trung bình của tgiác MBH
=> I là trung điểm của MH.
vậy: IM = IH = AG
có: AM = AB
góc BAG = góc AMI (so le trong)
=> tgiác AGB = tgiác MIA ( c.g.c)
c/ có AG//MH, A là trung điểm BM
=> AG là đường trung bình của tgiácBMH
=> G là trung điểm BH
hay BG = GH.
a) Ta có AB^2 + AC^2=6^2 + 8^2= 36 + 64= 100=BC^2
=> ΔABC vuông tại A (định lý Py- ta-go đảo)
b) Xét ΔAHD và ΔAED có:
AD là cạnh chung
^AHD=^AED (=90°)
^HAD=^EAD (AD là tia phân giác)
Vậy ΔAHD = ΔAED
=> AH=AE
DH=DE
Nên AD là đường trung trực của HE
c) ΔDEC vuông tại E có DC là cạnh huyền nên DC là cạnh lớn nhất.
Do đó DE<DC
Mà DH=DE (cmt)
Nên DH<DC
a) Xét tam giác ABC có:
6^2 +8^2 =10^2
<=> AB^2 +AC^2 =BC^2
Áp dụng định lí Py-ta-go
=> tam giác ABC vuông tại A
=> đpcm
b)
+) xét tam giác AHD và tam giác AED có:
góc H = góc E =90 độ
cạnh AD chung
góc HAD = góc DAE ( gt)
=> tam giác AHD = tam giác AED (cạnh huyền -góc nhọn)
=> AH =AE ( 2 cạnh tương ứng)
=> Tam giác AHE cân tại A (1)
Gọi giao điểm của HE và AD là O
=> HO = OE
=> AO là đường trung tuyến của HE(2)
Từ 1 và 2
=> OA là đường trung trực của HE
Hay Ad là đường trung trực của HE
=> đpcm
a) \(\Delta\)ABC cân có AD là đường phân giác
=> AD đồng thời là đường cao và đường trung tuyến
=> AD \(\perp\)BC và D là trung điểm BC
b) Xét \(\Delta\)ABD vuông tại D có: AB = 13 cm ; BD = 1/2 BC = 10 : 2 = 5 cm
Theo định lí pitago => \(AD^2+BD^2=AB^2\)
=> \(AD^2=13^2-5^2=144\)
=> AD = 12 cm
c) G là trọng tâm \(\Delta\)ABC mà AD là đường trung tuyến
=> AD qua G hayA;D; G thẳng hàng.
a) Trong tam giác cân , đường phân giác xuất phát từ đỉnh đối diện với đáy đồng thời là đường trung tuyến với cạnh đáy
Xét tam giác cân ABC có AD là đường phân giác
=> AD cũng là đường trung tuyến của tam giác cân ABC
=> AD vuông góc với BC và BD = CD
b)BD = CD = 1/2BC = 5cm
Áp dụng định lí Pytago cho tam giác vuông ABD ta có
AB2 = AD2 + BD2
=> AD = \(\sqrt{AB^2-BD^2}=\sqrt{13^2-5^2}=12cm\)
c) G là trọng tâm mà AD cũng là đường trung tuyến
=> G nằm trên AD => A G D thẳng hàng