K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

1. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel :

\(P=a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{2}+\frac{9}{a+b+c}=\frac{3}{2}+\frac{9}{\frac{3}{2}}=\frac{3}{2}+6=\frac{15}{2}\)

Dấu "=" xảy ra <=> a=b=c=1/2

26 tháng 8 2021

2. Áp dụng bất đẳng thức AM-GM :

\(P=\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)-3\left(a+b+c\right)\)

\(\ge2\sqrt{4a\cdot\frac{1}{a}}+2\sqrt{4b\cdot\frac{1}{b}}+2\sqrt{4c\cdot\frac{1}{c}}-3\cdot\frac{3}{2}=4\cdot3-\frac{9}{2}=\frac{15}{2}\)

Dấu "=" xảy ra <=> a=b=c=1/2

6 tháng 2 2017

ab+bc+ca=3ac hay ab+bc+ca=3abc

7 tháng 2 2017

Cứ phải cảnh giác bạn à:

không biết hay vô tình hay hưu ý nữa nhưng các câu hỏi sai xuất hiện rất nhiều

khi hỏi lại, không thấy phải hồi. hay là người hỏi cũng chưa hiểu câu hỏi

7 tháng 1 2020

4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)

\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)

\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)

Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)

Đẳng thức xảy ra khi ...(anh giải nốt ạ)

7 tháng 1 2020

@Cool Kid:

Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)

Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)

\(\sqrt{a^2-ab+b^2}=\sqrt{b.\frac{a^2-ab+b^2}{b}}=\sqrt{b.\left(\frac{a^2}{b}-a+b\right)}\le\frac{\frac{a^2}{b}-a+2b}{2}\)

tương tự mấy cái trên

4 tháng 1 2016

Ta có :

\(\frac{a^6}{a^3+a^2b+ab^2}+\frac{b^6}{b^3+b^2c+bc^2}+\frac{c^6}{c^3+ac^2+a^2c}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+a^2b+ab^2+b^3+b^2c+bc^2+c^3+ca^2+c^2a}\)

( BĐT ..... ) 

TA đi cm : \(a^3+ab^2+a^2b+b^3+b^2c+bc^2+c^3+ac^2+a^2c\) \(\le3\left(a^3+b^3+c^3\right)\) 

 (*) CM : \(a^2b+ab^2=ab\left(a+b\right)\le a^3+b^3\) ( cái này tự cm ) 

          Tương tự bc^2 ; b^2c ; ca^2 ; c^2a  ... 

=>\(a^3+ab\left(a+b\right)+b^3+bc\left(b+c\right)+c^3+ac\left(a+c\right)\le a^3+a^3+b^3+b^3+b^3+c^3+c^3+a^3+c^3\)

                                                                                                             = 3 (a^3 + b^3 + c^3 ) 

BĐT được cm . 

Dấu = xảy ra khi a = b= c 

4 tháng 1 2016

icon-chatcông tử bạc liêu

22 tháng 7 2019

Em làm thử nhé!

Bài 1: \(A=\left[\frac{a^2}{b-1}+4\left(b-1\right)\right]+\left[\frac{b^2}{a-1}+4\left(a-1\right)\right]-4\left(a+b\right)+8\)

Cauchy vào là ra rồi ạ;)

Bài 2: Em chịu

22 tháng 7 2019

2) Có: \(\sqrt{ab}\le\frac{a+b}{2}=1\)\(\sqrt{a}+\sqrt{b}=\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2}\le\sqrt{2\left(a+b\right)}=2\)

\(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}=\frac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{ab}}\ge\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3=\frac{a^2}{\sqrt{a}}+\frac{b^2}{\sqrt{b}}\)

\(\ge\frac{\left(a+b\right)^2}{\sqrt{a}+\sqrt{b}}\ge=\frac{2^2}{2}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=1\)

7 tháng 9 2016

câu a,mình ko biết nhưng câu b bạn cộng 1+b cho số hạng đầu áp dụng cô si,các số hạng khác tương tự rồi cộng vế theo vế,ta có điều phải c/m

7 tháng 9 2016

Bạn nói rõ hơn được không???

2 tháng 8 2017

c/ \(C'=\frac{1}{\frac{1}{3-2\sqrt{x}}}.\frac{1}{\frac{1}{\sqrt{3-2\sqrt{x}}}+1}=\frac{\sqrt{\left(3-2\sqrt{x}\right)^3}}{1+\sqrt{\left(3-2\sqrt{x}\right)}}\)

Đặt \(\sqrt{\left(3-2\sqrt{x}\right)}=a\)

\(\Rightarrow C'=\frac{a^3}{a+1}=a^2-a+1-\frac{1}{a+1}\)

Đế C' nguyên thì a + 1 là ước của 1

\(\Rightarrow a=0\)

\(\Rightarrow\sqrt{\left(3-2\sqrt{x}\right)}=0\)

\(\Rightarrow x=\frac{9}{4}\left(l\right)\)

Vậy không có x.

Không biết có nhầm chỗ nào không nữa. Lam biếng kiểm tra lại quá. You kiểm tra lại hộ nhé. Thanks

2 tháng 8 2017

a/ \(C=\left(\frac{2\sqrt{x}}{2x-5\sqrt{x}+3}-\frac{5}{2\sqrt{x}-3}\right):\left(3+\frac{2}{1-\sqrt{x}}\right)\)

\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}-\frac{5}{2\sqrt{x}-3}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)

\(=\left(\frac{2\sqrt{x}-5\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)

\(=\frac{5-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}.\frac{\sqrt{x}-1}{3\sqrt{x}-5}\)

\(=\frac{1}{3-2\sqrt{x}}\)

Câu b, c tự làm nhé