Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì S chia hết cho 2 nhưng không chia hết cho 4 => S không là SCP
Vậy S không là số chính phương
~HỌC TỐT NHÉ
Ta có: A = 5 + 52 + 53 +....+ 5100
⇒�=(5+52)+(53+54)+...+(599+5100)⇒A=(5+52)+(53+54)+...+(599+5100)
⇒�=5(1+5)+53.(1+5)+...+599.(1+5)⇒A=5(1+5)+53.(1+5)+...+599.(1+5)
⇒�=5.6+53.6+...+599.6⇒A=5.6+53.6+...+599.6
�=6.(5+53+...+599)A=6.(5+53+...+599) chia hết cho 6.
Vì A chia hết cho 6 nên A là hợp số.
A =5 + 52 + 53 + ... + 5100
A ⋮ 1; 5 ; A (A > 5)
Vậy A là hợp số
b; A = 5 + 52 + 53 + ... + 5100
A = 5 + 52(1 + 5 + 52 + ... + 598)
⇒ A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó.
S=1+3+32+33+.................+330
S=1+3+32.1+32.3+...............+32.328
S=1+3+32(1+3+........+328)
S=4+32(1+3+........+328)
vì 32(1+3+........+328) chia hết cho 9 =32 mà 4 không chia hết cho 9 nên S không là số chính phương
ta thấy : \(2^2\) chia hết cho \(2^2\)
\(2^3\)chia hết cho \(2^2\)
....
\(2^{2012}\)chia hết cho \(2^2\)
=> \(2^2+2^3+...+2^{2012}\) chia hết cho \(2^2\)
mà 2 ko chia hết cho \(2^2\)
=> S ko chia hết cho 4 hay S ko phải là số CP