Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét pt \(x^2-\left(m-1\right)x-m^2+m-1=0\) \(\left(1\right)\)
từ (1) có \(\Delta=\left[-\left(m-1\right)\right]^2-4.\left(-m^2+m-1\right)\)
\(\Delta=m^2-2m+1+4m^2-4m+4\)
\(\Delta=5m^2-6m+5\)
\(\Delta=5\left(m^2-\frac{6}{5}m+1\right)\)
\(\Delta=5\left[m^2-2.\frac{3}{5}m+\frac{9}{25}-\frac{9}{25}+1\right]\)
\(\Delta=5\left[\left(m-\frac{3}{5}\right)^2+\frac{16}{25}\right]>0\forall m\)
\(\Rightarrow pt\left(1\right)\) luôn có 2 nghiệm phân biệt \(\forall m\)
ta có vi - ét \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-m^2+m-1\end{cases}}\)
theo bài ra \(\left|x_2\right|-\left|x_1\right|=2\)
\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)=4\)
\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1.x_2\right|=4\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2+2\left|x_1.x_2\right|=4\)
\(\Leftrightarrow\left(m-1\right)^2-2\left(-m^2+m-1\right)+2\left|x_1.x_2\right|=4\)
\(\Leftrightarrow m^2-2m+1+2m^2-2m+2+2\left|x_1.x_2\right|=4\)
\(\Leftrightarrow3m^2-4m+3+2\left|x_1.x_2\right|=4\)
cái này đến đây xét ra 2 trường hợp rồi đối chiếu với ĐKXĐ là xong
1) a/ để pt có 2 nghiệm pb <=> đen ta phẩy > 0
<=> (m-1)2 - 1.m2 >0
<=> m2-2m+1-m2 >0
<=> -2m+1 >0 .
<=> -2m > -1
<=> m < 1/2
vậy khi m < 1/2 thì pt có 2 nghiệm pb
2) để pt có 2 nghiệm <=> đen ta >= 0
<=> (-2)2 - m >= 0
<=> 4-m >= 0
<=> m <= 4
theo vi-et ta có:
x1+x2= 4
x1.x2= m
theo đầu bài ta có:
x12 + x22 = 10
<=> x12+2x1x2+x22 -2x1x2=10
<=> (x1+x2)2-2x1x2=10
<=> 42-2m = 10
<=> 2m =6
<=> m=3
vậy khi m = 3 thì pt có 2 nghiệm thỏa mãn x12+ x22=10
1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0
Nếu x-5=0 suy ra x=5
Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0
Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0
Suy ra x=1 hoặc x=6.
bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)
\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)
\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)
thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)
\(\left(++\right)< =>x-5=0< =>x=5\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)
a) ( a = 1; b = -2(m+3); c = m^2 + 3 )
\(\Delta=b^2-4ac\)
\(=\left[-2\left(m+3\right)\right]^2-4.1.\left(m^2+3\right)\)
\(=4\left(m^2+6m+9\right)-4m^2-12\)
\(=4m^2+24m+36-4m^2-12\)
\(=24m-24\)
Để pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow24m-24>0\Leftrightarrow m>1\)
b)
* Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=2\left(m+3\right)\\P=x_1x_2=\frac{c}{a}=m^2+3\end{cases}}\)
Ta có: \(x_1^2+x_2^2\)
\(=S^2-2P\)
\(=\left[2\left(m+3\right)\right]^2-2.\left(m^2+3\right)\)
\(=4\left(m^2+6m+9\right)-2m^2-6\)
\(=4m^2+24m+36-2m^2-6\)
\(=2m^2+24m+30\)
* \(\frac{1}{x_1}+\frac{1}{x_2}\)
\(=\frac{x_1+x_2}{x_1x_2}\)
\(=\frac{S}{P}\)
\(=\frac{2\left(m+3\right)}{m^2+3}\)
\(=\frac{2m+6}{m^2+3}\)
đặt \(x^2=t\left(t\ge0\right)\Rightarrow x=+-\sqrt{t}\)
\(\left(1\right)\Leftrightarrow t^2-t+m=0\)
=> pt (1) có 2 nghiệm pb <=> pt ẩn t có 1 nghiệm kép
\(\Rightarrow\Delta=0\Leftrightarrow1-4m=0\Leftrightarrow m=\frac{1}{4}\)