Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(A=\frac{2n+3}{n-2}\left(n\:\ne2\right)\)
\(\Rightarrow\frac{2n-4+7}{n-2}\)\(=\)\(\frac{2\left(n-2\right)+7}{n-2}=\frac{2\left(n-2\right)}{n-2}+\frac{7}{n-2}=2+\frac{7}{n-2}\)
\(2\inℤ\Rightarrow\frac{7}{n-2}\inℤ\Rightarrow7⋮\left(n-2\right)\)\(\Rightarrow\left(n-2\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng :
n-2 | -7 | -1 | 1 | 7 |
n | -5 | 1 | 5 | 9 |
Vậy \(n\in\left\{-5;1;3;9\right\}\)
Để A là phân số thì 3n + 7 ko chia hết cho n + 1
<=> n + 1 khác Ư(4) = {-1;-2;-4;1;2;4}
=> n khác {-2;-3;-5;0;1;3}
Để A là số nguyên thì 3n + 7 chia hết cho n + 1
=> 3n + 3 + 4 chia hết cho n + 1
=> 3.(n + 1) + 4 chia hết cho n + 1
=> 4 chia hết cho n + 1
=> n + 1 thuộc Ư(4) = {-4;-2;-1;1;2;4}
=> n = {-5;-3;-2;0;1;3}
Ta có :
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
a. Để A nguyên thì \(\frac{13}{2n+3}\in Z\)
\(\Rightarrow2n+3\in\left\{-13;-1;1;13\right\}\)
\(\Rightarrow2n\in\left\{-16;-4;-2;10\right\}\)
\(\Rightarrow n\in\left\{-8;-2;-1;5\right\}\)
b. Bổ sung điều kiện : A thuộc Z
Để \(A_{max}\) thì \(\frac{13}{2n+3}_{min}\)
\(\Leftrightarrow2n+3_{max}\in Z^-\)
Mà \(A\in Z\Leftrightarrow2n+3=-13\) hoặc \(2n+3=-1\)
\(\Rightarrow A_{max}=3-\frac{13}{-1}=16\Leftrightarrow n=-2\left(tm:n\in Z\right)\)
Vậy Amax = 16 <=> n = -2
\(A=\frac{2n+3}{n-2}=\frac{2n-4+7}{n-2}=\frac{2.\left(n-2\right)}{n-2}+\frac{7}{n-2}=2+\frac{7}{n-2}\)
Ta có A lớn nhất \(\Leftrightarrow\frac{7}{n-2}\)lớn nhất
\(\Leftrightarrow\hept{\begin{cases}n-2coGTNN\\n-2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}n>2;n\in Z\\n-2coGTNN\end{cases}}\)
\(\Leftrightarrow n=3\)
Khi đó A có GTLN là \(\frac{2.3+3}{3-2}=9\)
Vậy MAX A =9 \(\Leftrightarrow x=3\)
(P/S: có vài chỗ anh viết ko ra tiếng việt nhé )
Tìm số tự nhiên n để phân số B=\(\frac{10n-3}{4n-10}\)đạt giá trị lớn nhất? Tìm giá trị lớn nhất đó.
\(2B=\frac{10n-3}{2n-5}=\frac{10n-25+22}{2n-5}=\frac{5\left(2n-5\right)}{2n-5}+\frac{22}{2n-5}\)
=> \(2B=5+\frac{22}{2n-5}\)
Để B đạt giá trị lớn nhất thì 2B phải đạt GTLN
=> \(\frac{22}{2n-5}\)phải đạt GTLN => (2n-5) đạt GTNN => n=0 => 2n-5=-5
GTLN của 2B là: \(2B_{max}=5-\frac{22}{5}=\frac{3}{5}\)
=> \(B_{max}=\frac{3}{10}\) đạt được khi n=0
Để B đạt GTLN thì 2B đạt GTLN
Ta có:
2B=2.10n−34n−10=20n−64n−10=20n−50+444n−10=5.(4n−10)+444n−102B=2.10n−34n−10=20n−64n−10=20n−50+444n−10=5.(4n−10)+444n−10
2B=5.(4n−10)4n−10+444n−10=5+444n−102B=5.(4n−10)4n−10+444n−10=5+444n−10
Để 2B đạt GTLN thì 444n−10444n−10 đạt GTLN
=> 4n - 10 đạt GTNN
+ Với x < 3 thì 4n - 10 < 0, khi đó 444n−10<0444n−10<0
+ Với x≥3x≥3 thì 4n - 10 > 0, khi đó 444n−10444n−10 > 0
Mà n nhỏ nhất => n = 3
Như vậy, ta tìm được n = 3 thỏa mãn 2B đạt GTLN
Thay n = 3 vào B ta có:
B=10.3−34.3−10=30−312−10=272B=10.3−34.3−10=30−312−10=272
Vậy với n = 3 thì B đạt GTNN = 272
\(A=\dfrac{n+5}{2n-7}=\dfrac{1}{2}\cdot\dfrac{2n+10}{2n-7}\)
\(=\dfrac{1}{2}\cdot\dfrac{2n-7+17}{2n-7}\)
\(=\dfrac{1}{2}\cdot\left(1+\dfrac{17}{2n-7}\right)\)
Để A lớn nhất thì \(1+\dfrac{17}{2n-7}\) max
=>2n-7=1
=>2n=8
=>n=4
=>\(A_{max}=\dfrac{4+5}{2\cdot4-7}=9\)