Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do M, N là trung điểm của AD và BC nên Mn là đường trung bình của hình thang ABCD
⇒ MN // AB
Do vậy: MI // AB và NI // CD
Lại có: AB = 2MI = 12 ( cm ) ; CD = 2NI = 24 ( cm )
Kẻ AH ⊥ CD tại H và BK ⊥ CD tại K. Khi đó ABCD là hình thang cân nên:
AH = BK và DH = CK = \(\dfrac{DC-AB}{2}=\dfrac{24-12}{6}=6\left(cm\right)\)
Theo định lí Py - ta - go trong △ AHD ta có:
AH2 = AD2 - DH2 ⇒ AH = \(\sqrt{10^2-6^2}=8\left(cm\right)\)
Diện tích hình thang ABCD :
\(S_{ABCD}=\dfrac{\left(AB+CD\right).AH}{2}=\dfrac{\left(12+24\right).8}{2}=144\left(cm^2\right)\)
Xét hình thang ABCD có M và N lần lượt là trung điểm của AD và BC nên MN là đường trung bình của hình thang:
Suy ra: MN// AB// CD và
Suy ra: tứ giác MNCD là hình thang.
Vì M là trung điểm của AD và đường cao AH = 6cm nên chiều cao xuất phát từA của hình thang MNCD là:
Diện tích hình thang ABNM là :
Chọn đáp án D
Bài 1:
a: Xét tứ giác ABCD có góc B+góc D=180 độ
nên ABCD là tứ giác nội tiếp
=>góc BAC=góc BDC và góc DAC=góc DBC
mà góc CBD=góc CDB
nên góc BAC=góc DAC
hay AC là phân giác của góc BAD
b: Ta có: góc BCA=góc BAC
=>góc BCA=góc CAD
=>BC//AD
=>ABCD là hình thang
mà góc B=góc BCD
nên ABCD là hình thang cân