Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TỰ VẼ HÌNH NHA
a) Xét ΔABO và ΔCOD có:
\(\widehat{ABO}=\widehat{COD}\left(AB//DC\right)\)
\(\widehat{AOB}=\widehat{DOC}\left(đđ\right)\)
=> \(\text{ Δ}ABO~\text{Δ}COD\left(g.g\right)\)
\(\Rightarrow\frac{OA}{OB}=\frac{OC}{OD}\)
\(\Leftrightarrow OA.OD=OB.OC\)
b) vì ΔABO~ΔCOD
=> \(\frac{DC}{OC}=\frac{AB}{OA}\)
\(\Leftrightarrow DC.OA=AB.OC\)
\(\Leftrightarrow10.OA=5.6\)
\(\Leftrightarrow OA=3\left(cm\right)\)
OE thì mk chịu
a) Xét \(\Delta OAB\)và \(\Delta OCD\)có:
\(\widehat{OAB}=\widehat{OCD}\) (slt)
\(\widehat{OBA}=\widehat{ODC}\) (slt)
suy ra: \(\Delta OAB~\Delta OCD\) (g.g)
\(\Rightarrow\)\(\frac{OA}{OC}=\frac{OB}{OD}\)
\(\Rightarrow\)\(OA.OD=OB.OC\)
b) \(\Delta OAB~\Delta OCD\)
\(\Rightarrow\)\(\frac{OA}{AC}=\frac{AB}{CD}\)
\(\Rightarrow\)\(OA=\frac{OC.AB}{CD}=3\)
\(\Rightarrow\)\(AC=OA+OC=9\)
\(\Delta AEO~\Delta ADC\) ( do OE // DC )
\(\Rightarrow\)\(\frac{OE}{DC}=\frac{OA}{AC}\) \(\Rightarrow\) \(OE=\frac{OA.DC}{AC}=\frac{10}{3}\)
c. -Xét △ADC có: OM//DC (gt).
\(\Rightarrow\dfrac{MO}{DC}=\dfrac{AO}{AC}\) (định lí Ta-let).
\(\Rightarrow\dfrac{DC}{MO}=\dfrac{AC}{AO}\)
\(\Rightarrow\dfrac{DC}{OM}-1=\dfrac{OC}{AO}\) (1).
-Xét △BDC có: ON//DC (gt).
\(\Rightarrow\dfrac{ON}{DC}=\dfrac{BO}{BD}\) (định lí Ta-let).
\(\Rightarrow\dfrac{DC}{ON}=\dfrac{BD}{BO}\)
\(\Rightarrow\dfrac{DC}{ON}-1=\dfrac{OD}{BO}\)
-Xét △ABO có: AB//DC (gt).
\(\Rightarrow\dfrac{OD}{BO}=\dfrac{OC}{OA}=\dfrac{DC}{AB}\) (3)
-Từ (1), (2),(3) suy ra:
\(\dfrac{DC}{OM}-1=\dfrac{DC}{ON}-1=\dfrac{DC}{AB}\)
\(\Rightarrow\dfrac{DC}{OM}=\dfrac{DC}{ON}=\dfrac{DC}{AB}+1=\dfrac{AB+DC}{AB}\)
\(\Rightarrow\dfrac{1}{OM}=\dfrac{1}{ON}=\dfrac{AB+DC}{AB.DC}=\dfrac{1}{AB}+\dfrac{1}{CD}\)
a: Xét ΔAOB và ΔCOD có
\(\widehat{OAB}=\widehat{OCD}\)
\(\widehat{AOB}=\widehat{COD}\)
Do đó: ΔAOB∼ΔCOD
Suy ra: \(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}\)
hay \(OA\cdot OD=OB\cdot OC\)
b: \(\dfrac{OA}{OC}=\dfrac{AB}{CD}\)
\(\Leftrightarrow OA=\dfrac{1}{2}\cdot6=3\left(cm\right)\)
A B C D E F O
a, xét tam giác ODC có : AB // DC
=> OA/OC = OB/OD = AB/DC (đl)
có : AB = 4; DC = 9 (gt)
=> OA/OC = OB/OD = 4/9
B, xét tam giác ABD có : EO // AB (gt) => EO/AB = DO/DB (hệ quả) (1)
xét tam giác ABC có FO // AB (gt) => OF/AB = CO/CA (hệ quả) (2)
xét tam giác ODC có AB // DC (gt) => DO/DB = CO/CA (hệ quả) (3)
(1)(2)(3) => OE/AB = OF/AB
=> OE = OF
xét tam giác ABD có : EO // AB(Gt) => EO/AB = DE/AD (hệ quả) (4)
xét tam giác ADC có EO // DC (gt) => OE/DC = EA/AD (hệ quả) (5)
(4)(5) => EO/AB + EO/DC = DE/AD + AE/AD
=> EO(1/AB + 1/DC) = 1 (*)
xét tam giác ACB có FO // AB (gt) => OF/AB = FC/BC (hệ quả) (6)
xét tam giác BDC có OF // DC (gt) => OF/DC = BF/BC (hệ quả) (7)
(6)(7) => OF/AB + OF/DC = FC/BC + BF/BC
=> OF(1/AB + 1/DC) = 1 (**)
(*)(**) => OF(1/AB + 1/DC) + OE(1/AB + 1/DC) = 1 + 1
=> (OE + OF)(1/AB + 1/DC) = 2
=> EF(1/AB + 1/DC) = 2
=> 1/AB + 1/DC = 2/EF
a: Xét ΔOAB và ΔOCD có
góc OAB=góc OCD
góc AOB=góc COD
=>ΔOAB đồng dạng vơi ΔOCD
=>OA/OC=OB/OD=AB/CD
=>OA*OD=OB*OC
b: OA/OC=AB/CD
=>OA/6=5/10=1/2
=>OA=3cm
Xet ΔADC có OE//DC
nên OE/DC=AO/AC
=>OE/10=3/(3+6)=3/9=1/3
=>OE=10/3cm