K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2019

đề bài: cho hình thanh ABCD (AB//CD). Gọi I là giao điểm của 2 đg chéo AC và BD. Vẽ qua I đường thẳng song song với AB và BC, cắt AD, BC lần lượt tại E,F. chứng minh:

....

bn tự kẻ hình nha :)

a) Xét tg ACD, có: EI // DC

\(\Rightarrow\frac{EI}{DC}=\frac{AI}{AC}\)(1)

Xét tg BCD, có: FI // DC
\(\Rightarrow\frac{FI}{DC}=\frac{IB}{BD}\)(2)

Xét tg ABI, có: AB // CD
\(\Rightarrow\frac{AI}{AC}=\frac{IB}{BD}\) (3)

Từ (1);(2);(3) \(\Rightarrow\frac{IE}{DC}=\frac{IF}{DC}\Rightarrow IE=IF\)

b) Xét tg ACD, EI // DC
=> EI/DC = AE/ AD (1)

Xét tg ADB, EI // AB

=> EI/AB = DE/AD (2)

Từ (1);(2) => \(\frac{EI}{DC}+\frac{EI}{AB}=\frac{AE}{AD}+\frac{DE}{AD}=1\)

\(\Rightarrow EI.\left(\frac{1}{DC}+\frac{1}{AB}\right)=1\Rightarrow\frac{1}{EI}=\frac{1}{DC}+\frac{1}{AB}\)

cmtt, t/có: \(\frac{1}{FI}=\frac{1}{DC}+\frac{1}{AB}\)

\(\Rightarrow\frac{1}{EI}=\frac{1}{FI}=\frac{1+1}{EI+FI}=\frac{2}{EF}=\frac{1}{AB}+\frac{1}{CD}\)

26 tháng 1 2017

Giúp mình với, mình cần gấp !!!!!!!!!!!! Thanks các bạn nhìu!

18 tháng 2 2019

A B C D E F I

Gọi I là giao điểm của BD và EF

EI//AB => \(\frac{DE}{AD}=\frac{ID}{DB}\)

IF//DC => \(\frac{BI}{BD}=\frac{BF}{BC}\)

=> \(\frac{DE}{AD}+\frac{BF}{BC}=\frac{ID}{DB}+\frac{BI}{BD}=\frac{BI+ID}{BD}=\frac{BD}{BD}=1\)

19 tháng 4 2020

D C E I F A B

Gọi I là giao điểm của DB và EF

Xét tam giác ADB 

Có : EI // AB

\(\Rightarrow\frac{DE}{AD}=\frac{ID}{DB}\)( 1 )

Xét tam giác DBC 

Có : IF // DC

\(\Rightarrow\frac{BI}{BD}=\frac{BF}{BC}\)( 2 )

Từ (1)(2) , suy ra

\(\frac{DE}{AD}+\frac{BF}{BC}=\frac{ID}{DB}+\frac{BI}{BD}=\frac{BI+ID}{BD}=\frac{BD}{BD}=1\)

Vậy : \(\frac{ED}{AD}+\frac{BF}{BC}=1\)

Em làm kiểu này không biết có đúng không cô Chi check lại giúp em ạ <3

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

"Hai đường chéo cắt nhau tại O và song song với đáy AB....". Câu này không đúng lắm. Bạn xem lại đề.

26 tháng 2 2021

Câu này không có sai đề ạ!

Y
28 tháng 2 2019

2. A B C D O E F

+ AB // CD \(\Rightarrow\dfrac{AO}{CO}=\dfrac{BO}{DO}\)

\(\Rightarrow\dfrac{AO}{AO+CO}=\dfrac{BO}{BO+DO}\Rightarrow\dfrac{AO}{AC}=\dfrac{BO}{BD}\)

+ OE // CD => \(\dfrac{OE}{CD}=\dfrac{AO}{AC}\)

+ OF // CD => \(\dfrac{OF}{DC}=\dfrac{BO}{BD}\)

\(\Rightarrow\dfrac{OE}{CD}=\dfrac{OF}{DC}\Rightarrow OE=OF\)

Bài 1:

a: Xét hình thang ABCD có MN//AB//CD

nên AM/MD=BN/NC

b: AM/MD=BN/NC

=>MD/AM=NC/BN

=>\(\dfrac{MD+AM}{AM}=\dfrac{NC+BN}{BN}\)

=>AD/AM=BC/BN

=>AM/AD=BN/BC

c: AM/AD=BN/BC

=>1-AM/AD=1-BN/BC

=>DM/AD=CN/CB