Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D H 8 6
a.
Xét tam giác AHB và tam giác BCD có:
góc H = C = 90o
góc ABH = BDC ( so le trong)
Do đó: tam giác AHB ~ BCD ( g.g)
b.
Xét tam giác ADH và BDA có:
góc D chung
góc AHD = BAD = 90o
Do đó: tam giác ADH ~ BDA
=> \(\dfrac{AD}{BD}=\dfrac{DH}{AD}\Rightarrow AD^2=BD.DH\)
c.
Tam giác ABD vuông tại A
=> BD2 = AB2 + AD2
=> BD2 = 82 + 62
=> BD = 10 cm
Ta có: tam giác ADH~BDA
=> \(\dfrac{AD}{BD}=\dfrac{AH}{AB}\Rightarrow AH=\dfrac{AD.AB}{BD}=\dfrac{6.8}{10}=4,8\)
Tam giác ADH vuông tại H
=> AD2 = AH2 + DH2
=> DH2 = AD2 - AH2
=> DH2 = 62 - 4,82
=> DH = 3,6
Vậy: AH = 4,8 cm và DH = 3,6 cm
A B C D 8 cm 6 cm 1 1
Áp dụng định lý PI ta go vào tam giác ADB có :
\(DB=\sqrt{AB^2+AD^2}=\sqrt{8^2+6^2}=10\left(cm\right)\)
b.\(\text{Xét 2 tam giác ADH và tam giác ADB có:}\)
\(\widehat{A}=\widehat{H}=90^0\)
\(\widehat{D}\)\(\text{chung}\)
\(\Rightarrow\Delta ADH~\Delta ADB\left(gg\right)\)
b.\(\Rightarrow\frac{AD}{AD}=\frac{DH}{DB}\)
Hay \(\frac{AD}{DH}=\frac{DB}{AD}\)
\(\Rightarrow AD^2=DH.DB\)
c. \(\text{Xét 2 tam giác ABD và tam giác CDB có:}\)
\(\widehat{A}=\widehat{C}=90^0\)
\(\widehat{B_1}=\widehat{D_1}\left(slt\right)\)
\(\Rightarrow\Delta ABD~\Delta CDB\left(gg\right)\)
mà \(\Delta ADB~\Delta ADH\left(a\right)\)
\(\Rightarrow\Delta AHD~\Delta BCD\)
d. \(\Rightarrow\frac{AH}{BC}=\frac{HD}{CD}=\frac{AD}{BD}\)
\(\Rightarrow\frac{AH}{6}=\frac{DH}{8}=\frac{6}{10}\)
\(\Rightarrow AH=\frac{6.6}{10}=3,6\left(cm\right)\)
\(DH=\frac{6.8}{10}=4,8\left(cm\right)\)
a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có
góc HDA chung
=>ΔHAD đồng dạng với ΔABD
b: ΔABD vuông tại A có AH là đường cao
nên DA^2=DH*DB
c: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
DH=6^2/10=3,6cm
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)
Do đó: ΔAHB\(\sim\)ΔBCD
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
\(\widehat{ADH}\) chung
Do đó: ΔADH\(\sim\)ΔBDA
Suy ra: \(\dfrac{AD}{BD}=\dfrac{HD}{DA}\)
hay \(AD^2=HD\cdot BD\)
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
ˆABH=ˆBDCABH^=BDC^
Do đó: ΔAHB∼∼ΔBCD
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
ˆADHADH^ chung
Do đó: ΔADH∼∼ΔBDA
Suy ra: ADBD=HDDAADBD=HDDA
hay AD2=HD⋅BD
a: Xét ΔAHB vuông tạiH và ΔBCD vuông tại C có
góc ABH=góc BDC
Do đó: ΔAHB\(\sim\)ΔBCD
b: Xét ΔABD vuông tại Acó HA là đừog cao
nên \(AD^2=DH\cdot DB\)
c: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)
\(DH=\dfrac{6^2}{10}=3.6\left(cm\right)\)
\(AH=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\)