K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

A B C D M N I H

Gọi khoảng cách từ A đến BM,DN lần lượt là h và k. Kẻ MH vuông góc AB.

Ta có \(S_{AMB}=\frac{MH.AB}{2}=\frac{S_{ABCD}}{2}\). Tương tự \(S_{AND}=\frac{S_{ABCD}}{2}\)

Do đó \(2S_{AMB}=2S_{AND}\) hay \(h.BM=k.DN\). Mà BM = DN nên \(h=k\)

Suy ra khoảng cách từ A đến 2 đường thẳng BM,DN là bằng nhau; BM cắt DN tại I

Vậy thì A nằm trên phân giác của ^DIB hay IA là phân giác góc DIB (đpcm).

22 tháng 4 2020

A H B N C M D I

Gọi khoảng cách từ A đến BM,ND lần lượt là h và k. Kẻ MH vuông góc AB

Ta có : \(S_{AMB}=\frac{MH.AB}{2}=\frac{S_{ABCD}}{2}\)

Tương tự \(S_{AND}=\frac{S_{ABCD}}{2}\)

Do đó : \(2S_{AMB}=2S_{AND}\) hay \(h.BM=k.DN\)

Mà BM=DN nên h=k

Suy ra khoảng cách từ A đến hai đường thẳng BM,DN là bằng nhau; BM cắt DN tại I

Vậy thì A nằm trên phân giác của \(\widehat{DIB}\) hay IA là phân giác của góc DIB ( đpcm ) 

6 tháng 5 2018

haha m hok giỏi môn gì nhất

tl hộ mk vs 

mk cho

22 tháng 8 2023

.a.

Vì `EF` là đường trung trực MB.

=> `EM=EB`

=> `ΔEMB` cân tại E

=> \(\widehat{EMB}=\widehat{EBM}\)

Chứng minh tương tự được: \(\widehat{FMB}=\widehat{FBM}\)

Vì `AM=DN` mà AM//DN

=> Tứ giác `AMND` là hình bình hành.

b.

Từ câu (a) suy ra: 

ME//BF

BE//FM

=> Hình bình hành MEBF có `EF⊥MB`

=> Tứ giác MEBF là hình thoi

24 tháng 10 2023

 

a) Do ABCD là hình vuông (gt)

\(\Rightarrow AB=AD\)

\(\widehat{ABM}=\widehat{ADN}=90^0\)

Xét hai tam giác vuông: \(\Delta ABM\) và \(\Delta ADN\) có:

\(AB=AD\left(cmt\right)\)

\(BM=DN\left(gt\right)\)

\(\Rightarrow\Delta ABM=\Delta ADN\) (hai cạnh góc vuông)

\(\Rightarrow AM=AN\) (hai cạnh tương ứng)

\(\widehat{BAM}=\widehat{DAN}\) (hai góc tương ứng)

Ta có:

\(\widehat{BAM}+\widehat{DAM}=90^0\)

\(\Rightarrow\widehat{DAN}+\widehat{DAM}=90^0\)

\(\Rightarrow\widehat{MAN}=90^0\)

\(\Delta AMN\) có:

\(AM=AN\left(cmt\right)\)

\(\Rightarrow\Delta AMN\) cân tại A

Mà \(\widehat{MAN}=90^0\left(cmt\right)\)

\(\Rightarrow\Delta AMN\) vuông cân tại A

b) Do \(\Delta AMN\) cân tại A

E là trung điểm của MN

\(\Rightarrow AE\) là đường trung tuyến, cũng là đường cao của \(\Delta AMN\)

\(\Rightarrow AE\perp MN\)

\(\Rightarrow EF\perp MN\)

Xét hai tam giác vuông: \(\Delta FEM\) và \(\Delta FEN\) có:

\(EM=EN\left(gt\right)\)

\(EF\) là cạnh chung

\(\Rightarrow\Delta FEM=\Delta FEN\) (hai cạnh góc vuông)

\(\Rightarrow FM=FN\) (hai cạnh tương ứng)

Xét \(\Delta FAN\) và \(\Delta FAM\) có:

\(FA\) là cạnh chung

\(FN=FM\left(cmt\right)\)

\(AN=AM\left(cmt\right)\)

\(\Rightarrow\Delta FAN=\Delta FAM\left(c-c-c\right)\)

20 tháng 3 2017

a) Do AM = DN Þ MADN là hình bình hành

⇒   D ^ = A M N ^ = E M B ^ = M B C ^  

Ta có DMPE = DBPE nên EP = FP. Vậy MEBF là hình thoi và 2 điểm E, F đối xứng nhau qua AB.

b) Tứ giác MEBF có MB Ç EF = P; Lại có P trung điểm BM, P là trung điểm EF, MB ^ EF.

Þ  MEBF là hình thoi.

c) Để BNCE là hình thang cân thì C N E ^ = B E N ^  

C N E ^ = D ^ = M B C ^ = E B M ^  nên DMEB có 3 góc bằng nhau, suy ra điều kiện để BNCE là hình thang cân thì  A B C ^ = 60 0