K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2016

tự vẽ hình nhé bạn

a) xét tg ABMN có

AN = BM ( bạn tự c/m)

AN // BM ( bạn tự c/m)

==> ABMN hbh

mà AN = AB ==> ABMN hthoi ==> góc P = 90 độ

==> KB // DM ( cug vuông vs PM)

==> MDKB hthang

b) c/m t2 ta có NMDC hthoi ==> góc Q = 90 độ

Xét tam giác ADM có AN = ND = NM ( ABMN hthoi)

==> ADM tam giác vuông ( Đ.lý Py ta go đảo)

==> góc M = 90 độ

ta có góc P = góc M = góc Q = 90 độ ==> PMQN hcn

c) Shcn PMQN = PM . MQ = 8 . 5 = 40 cm2

d) ( tự c/m :P)

dc thì like nhé :)))

21 tháng 12 2016

thanks bạn nhé

haha

6 tháng 12 2015

a) Chứng minh tứ giác MBKD là hình thang.( bạn tự vẽ hình nhé!)
- Đầu tiên CM tứ giác MBND là hình bình hành.
Vì ABCD là hình bình hành  AD = BC  AN = ND = BM = MC
Và  AD // BC=>  ND // BM
Xét tứ giác MBND, ta có:
ND // BM 
ND = BM
 Tứ giác MBND là hình bình hành. 
 NB // MD . Mà NB giao với MD = {K}=>  B, N , K thẳng hàng.
Xét tứ giác MBKD, ta có:
NB // MD
B, N , K thẳng hàng
=> MD // BK
 =>Tứ giác MBKD là hình thang ( đpcm ).

b)
Vì P thuộc BK, Q thuộc MD mà BK // MD  QM // PN ( 1 )
Vì P thuộc AM, Q thuộc NC  PM // QN (2)
Từ (1), (2)=>  PMQN là hình bình hành. ( 3 )
Theo CM ở câu a)  ANMB là hình thoi ( có 4 cạnh bằng nhau )
 AM vuông góc với BN. (4)
Từ (3), (4)  PMQN là hình chữ nhật.
c) Để PMQN là hình vuông thì hình bình hành phải có thêm điều kiện là góc A = 90o
Nếu A = 90o  thì tứ giác ANMB là hình vuông=>  AM vuông góc với BN
Theo tính chất đường chéo của hình vuông=>  PN = PM
 Hình chữ nhật PMQN có 2 cạnh kề bằng nhau nên nó sẽ là hình vuông ( đpcm )

6 tháng 12 2015

 

của luckybaby_98 trên diễn đàn học mãi giống y chang luôn, mih cx có nick trên diễn đàn học mãi mak

a: Xét tứ giác BMDN có

BM//DN

BM=DN

Do đó: BMDN là hình bình hành

Suy ra: DM//BN

hay DM//BK

=>BMDK là hình thang

b: Xét tứ giác BMNA có

BM//NA

BM=NA

Do đó: BMNA là hình bình hành

mà BM=BA

nên BMNA là hình thoi

Suy ra: MA vuông góc với BN tại P

Ta có: MD//BN

nên MQ//PN

Xét tứ giác AMCN có 

MC//AN

MC=AN

DO đó: AMCN là hình bình hành

Suy ra: AM//CN

=>PM//NQ

Xét tứ giác PMQN có 

PM//QN

PN//QM

Do đó: PMQN là hình bình hành

mà \(\widehat{MPN}=90^0\)

nên PMQN là hình chữ nhật

23 tháng 12 2016

Câu 1:

a)

\(BM=MC=\frac{1}{2}BC\) (M là trung điểm của BC)

\(AN=ND=\frac{1}{2}AD\) (N là trung điểm của AD)

\(BC=AD\) (ABCD là hình bình hành)

\(\Rightarrow AN=ND=BM=MC\) (1)

mà ND // BM

=> BMDN là hình bình hành

=> BN // MD (2)

=> MDKB là hình thang

b)

MC = AN (theo 1)

mà MC // AN (ABCD là hình bình hành)

=> AMCN là hình bình hành

=> AM // CN (3)

Từ (2) và (3)

=> MPNQ là hình bình hành (4)

BM = AN (theo 1)

mà BM // AN (ABCD là hình bình hành)

=> ABMN là hình bình hành

mà AB = BM \(\left(=\frac{1}{2}BC\right)\)

=> ABMN là hình thoi

=> AM _I_ BN

=> MPN = 900 (5)

Từ (4) và (5)

=> MPNQ là hình chữ nhật

c)

MPNQ là hình vuông

<=> MN là tia phân giác của PMQ

mà MN là đường trung tuyến của tam giác MDA vuông tại M (N là trung điểm của AD; MPNQ là hình chữ nhật)

=> Tam giác MDA vuông cân tại M có MN là đường trung tuyến

=> MN là đường cao của tam giác MDA

=> MNA = 900

mà MNA = ABM (ABMN là hình thoi)

=> ABM = 900

mà ABCD là hình bình hành

=> ABCD là hình chữ nhật

Câu 2:

a)

\(AE=EB=\frac{AB}{2}\) (E là trung điểm của của AB)

\(CF=FD=\frac{CD}{2}\) (F là trung điểm của của CD)

mà AB = CD (ABCD là hình bình hành)

=> AE = EB = CF = FD (1)

mà AE // CF (ABCD là hình bình hành)

=> AECF là hình bình hành

b)

AE = FD (theo 1)

mà AE // FD (ABCD là hình bình hành)

=> AEFD là hình bình hành

mà DA = AE \(\left(=\frac{1}{2}AB\right)\)

=> AEFD là hình thoi

=> AF _I_ ED

=> EMF = 900 (2)

EB = FD (theo 1)

mà EB // FD (ABCD là hình bình hành)

=> EBFD là hình bình hành

=> EM // NF

mà EN // MF (AECF là hình bình hành)

=> EMFN là hình bình hành

mà EMF = 900 (theo 2)

=> EMFN là hình chữ nhật

c)

EMFN là hình vuông

<=> EF là tia phân giác của MEN

mà EF là đường trung tuyến của tam giác ECD vuông tại E (F là trung điểm của CD; EMFN là hình chữ nhật)

=> Tam giác ECD vuông cân tại E có EF là đường trung tuyến

=> EF là đường cao của tam giác ECD

=> EFD = 900

mà EFD = DAE (AEFD là hình thoi)

=> DAE = 900

mà ABCD là hình bình hành

=> ABCD là hình chữ nhật

Bài 1: 

a: \(A=\dfrac{3x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x-1}{x^2+x+1}\)

\(=\dfrac{3x+x^2-2x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x-1}\)

b: Để A=2 thì x-1=1/2

hay x=3/2

27 tháng 9 2018