Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bn ơi!! Cái đề nó hình như thíu chữ ý bn, mong bn có thể sửa lại để, để hỉu đề và giúp bn. ( Mk chỉ góp ý, mong bn đừng giận )
x y z O C H K
a, xét tam giác OCH và tam giác OCK có : OC chung
góc HOC = góc KOC do OC là phân giác của góc KOH (gT)
góc OHC = góc CKO = 90
=> tam giác OCK =tam giác OCH (ch-gn)
b, tam giác OCK =tam giác OCH (câu a)
=> CH = CK (đn)
xét tam giác HCB và tam giác KCA : có góc HCB = góc KCA (đối đỉnh)
góc BHC = góc AKC = 90
=> tam giác HCB = tam giác KCA (cgv-gnk)
=> HB = KA (đn)
c,CK = CH (Câu b)
=> tam giác CHK cân tại C (đn)
=> góc KHC = (180 - góc HCK) : 2 (tc) (1)
tam giác HCB = tam giác KCA (câu b) => CB = CA (đn)
=> tam giác CBA cân tại C (đn) => góc CAB (180 - góc BCA) : 2 (tc) (2)
góc HCK = góc BCA (đối đỉnh) (3)
(1)(2)(3) => góc KHC = góc CAB mà 2 góc này so le trong
=> HK // AB (tc)
d, có OH = OK do tam giác OCH = tam giác OCK (câu a)
HB = KA do tam giác HC = tam giác KCA (câu b)
OH + HB = OB
OK + KA = OA
=> OA = OB
=> tam giác OAB cân tại O (đn)
để OA = AB
<=> tam giác OAB đều (tc)
<=> góc xOy = 60
e, không biết làm em mới lớp 6
+) Xét tg ONB và OMA có
OB= OA (gt)
Góc O chung
Góc B = góc A(=90)
=> ∆ OMA (ch - gn)
=> />+) Ta có OA + AN = ON
OB+ BM= OM
Mà OA= OB
/>=> AN = BM
+) XÉT ∆OAH và ∆ OBH
OH cạnh cchung
OA= OB
góc A = góc B
=>∆ OAH= ∆ OBH( cho CGV)
=> AOH= BOH
=> OH là phân giác xOy
ta có (cmt)
=> ∆ ONM cân tại O
OI là trung tuyến => OI là đường cao
OI vuông góc NM(1)
Ta có MA, NB lần lượt vuông góc với Ox, Oy
MA cắt NB tại H
=> H là trực tâm của ∆OMN
=> OH vuông góc NM(2)
từ (1)(2)=> O , H , I thẳng hàng ( qua O chỉ kẻ đc duy nhất 1 đường thẳng vuông góc NM)
a, Do H thuộc đường phân giác OA => H cách đều Ox và Oy (t/c) => HB = HC
Xét tam giác OHC và tam giác AHB có : OH = AH(gt); góc OHC = góc AHB(đ2); HC = HB(cmt)
=> tam giác OHC = tam giác AHB(c.g.c) (1)
Xét tam giác OHC và tam giác OHB có : góc COH = góc BOH(gt); OH chung; góc OHC = góc OHB(=90*)
=> tam giác OHC = tam giác OHB(g.c.g) (2)
Từ (1) và (2) => tam giác AHB = tam giác OHB
b, Do tam giác OHC = tam giác AHB(cma) => góc OCH = góc ABH => AB // OC
Mà OC thuộc Oy => AB // Oy
c, CM tam giác OHB = tam giác AHC theo trường hợp c.g.c => góc OBH = góc ACH => OB // AC
Mà OB thuộc Ox => Ox // AC
d, Dựa vào tính chất cách đều của 1 điểm thuộc đường phân giác thfi sẽ suy ra được AO là p/g góc BAC nhé !!